\documentclass[12pt,reqno]{amsart} \usepackage[usenames]{color} \usepackage{amssymb} \usepackage{graphicx} \usepackage{amscd} \usepackage[colorlinks=true, linkcolor=webgreen, filecolor=webbrown, citecolor=webgreen]{hyperref} \definecolor{webgreen}{rgb}{0,.5,0} \definecolor{webbrown}{rgb}{.6,0,0} \usepackage{color} \usepackage{fullpage} \usepackage{float} \usepackage{psfig} \usepackage{graphics,amsmath,amssymb} \usepackage{amsfonts} \usepackage{latexsym} \usepackage{epsf} \def\divides{\, | \, } \setlength{\textwidth}{6.5in} \setlength{\oddsidemargin}{.1in} \setlength{\evensidemargin}{.1in} \setlength{\topmargin}{-.5in} \setlength{\textheight}{8.9in} \newcommand{\seqnum}[1]{\href{http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=#1}{\underline{#1}}} \begin{document} \begin{center} \epsfxsize=4in \leavevmode\epsffile{logo129.eps} \end{center} \begin{center} \vskip 1cm{\LARGE\bf The Greatest Common Divisor \\ \ \\ \vskip -.7cm of Two Recursive Functions \\ } \vskip 1cm \large Jan-Christoph Schlage-Puchta and J{\"u}rgen Spilker\\ Mathematisches Institut\\ Eckerstr.\ 1\\ 79104 Freiburg\\ Germany\\ \href{mailto:jcp@math.uni-freiburg.de}{\tt jcp@math.uni-freiburg.de} \\ \href{mailto:Juergen.Spilker@math.uni-freiburg.de}{\tt Juergen.Spilker@math.uni-freiburg.de} \\ \end{center} \vskip .4 in \begin{center} {\bf Abstract} \end{center} \vskip .2in Let $g, h$ be solutions of a linear recurrence relation of length 2. We show that under some mild assumptions the greatest common divisor of $g(n)$ and $h(n)$ is periodic as a function of $n$ and compute its mean value. \vskip .4in \newtheorem{theorem}{Theorem}[section] \newtheorem{proposition}{Proposition}[section] \newtheorem{corollary}{Corollary}[section] \newtheorem{lemma}{Lemma}[section] %\usepackage{latexsym} %\usepackage{amssymb} %\parskip2ex %\parindent0pt %\textheight23cm \textwidth15.6cm \hoffset-1.7cm \voffset-.5cm \newtheorem{Theo}{Theorem} \newtheorem{Prop}{Proposition} \newtheorem{Lem}{Lemma} \newtheorem{Cor}{Corollary} \newenvironment{proofof}[1]{\par\noindent{\em {\it Proof of #1.}}}{\hfill $\square$\par\medskip} \newcommand{\N}{\mathbb{N}} \newcommand{\Z}{\mathbb{Z}} \renewenvironment{proofof}[1]{\par\noindent{\em {\it Proof of #1.}}}{\hfill $\square$\par\medskip} \section{Problems and Results} Let $a, b$ be coprime integers, $b\neq 0$, and consider the recurrence relation \begin{equation}\label{RecDef} f(n+2)=af(n+1)+bf(n), \qquad n\in\N_0. \end{equation} Let $g, h:\N_0\to\Z$ be solutions of (\ref{RecDef}) with \begin{equation}\label{nontriv} |g(n)|+|h(n)|>0 \end{equation} for all $n\in\N_0$. We define the gcd function $t(n)=\gcd(g(n),h(n))$ and consider two problems. \medskip \noindent{\bf Problem 1.} Under which conditions on $g$ and $h$ is the function $t(n)$ periodic? \medskip \noindent {\bf Problem 2.} If $t(n)$ is periodic, what is the mean value of $t(n)$? \medskip We first need a \medskip \noindent {\bf Definition.} We call a function $f:\N_0\to\Z$ periodic and $q\in\N$ a period of $f$, iff there exists some $n_0\in\N_0$ such that $f(n)=f(n+q)$ for all $n\geq n_0$. If one can choose $n_0=0$, $f$ is called simply periodic. \medskip In this note we prove the following two theorems. \begin{Theo} Let $g, h:\N_0\to\Z$ be solutions of (\ref{RecDef}) satisfying (\ref{nontriv}), and assume that $c:= g(1)h(0)-g(0)h(1)\neq 0$. Then \begin{enumerate} \item[(a)] the function $t(n)$ is periodic, moreover, if $\gcd(b, c)=1$, it is simply periodic; \item[(b)] every common period of $g(n)\bmod |c|$ and $h(n)\bmod |c|$ is a period of $t(n)$; \item[(c)] for all $n\in\N_0$ we have $t(n) \divides c$. \end{enumerate} \end{Theo} \begin{Theo} Let $g, h:\N_0\to\Z$ be solutions of (\ref{RecDef}) satisfying (\ref{nontriv}), and assume that $g(0)=0$, $g(1)=1$, $c:=h(0)\neq 0$ and $\gcd(b, c)=1$. Then the mean value of $t(n)$equals $\sum_{d\divides c}\frac{\varphi(d)}{k(d)}$, where $k(d):=\min\{n\in\N: d\divides g(n)\}$. \end{Theo} \noindent {\bf Examples.} 1. In the case $g(0)=0$, $g(1)=1$, $h(0)=2$, $h(1)=a$, McDaniel \cite{McD} has shown, that $t(n)$ is 1 or 2 for $n\in\N$. This follows also from our Theorem 1 (c). If further $a=b=1$, we obtain the Fibonacci function (resp., Lucas function). Since $g(n)\bmod 2$ and $h(n)\bmod 2$ are simply periodic with period 3, we get \[ t(n) = \left\{\begin{array}{ll} 2, & n\equiv 0\pmod{3};\\ 1, & n\not\equiv 0\pmod{3},\end{array}\right. \] with mean value $\frac{4}{3}$. This is a well-known result (see e.g., \cite{Hog}, \cite{Wal}). \medskip \noindent 2. Defining $g$ and $h$ by $a=1, b=2$, $g(0)=h(0)=1$, $g(1)=2$, $h(1)=0$, we obtain the gcd function \[ t(n) = \left\{\begin{array}{ll} 1, & n=0\\ 2, & n\geq 1\end{array}\right., \] which is periodic, but not simply periodic. \bigskip \noindent {\bf Remarks.} 1. The assumption $\gcd(a, b)=1$ in Theorem 1 is necessary, since for every common divisor $d$ of $a$ and $b$ we have \[ d^n \divides t(2n), \qquad n\in\N. \] If $d>1$, $t(n)$ is unbounded, hence not periodic. \medskip \noindent 2. The gcd functions of recurrences of higher order need not be periodic. The companion polynomial $(x-1)(x-2)(x-3)$ corresponds to \[ f(n+3)=6f(n+2)-11f(n+1)+6f(n),\qquad n\in\N_0. \] It has solutions $g(n)=2^{n+1}-1$ and $h(n)=3^{n+1}-1$ with $c=-2$. If $p\geq 5$ is a prime, and $n\equiv -1\pmod{p-1}$, then \[ t(n)=\gcd(2^{n+1}-1, 3^{n+1}-1)\equiv 0\pmod{p} \] and $t(n)\geq p$; hence, $t(n)$ is not bounded and a forteriori not periodic. \medskip \noindent 3. The function $\ell(d)$ does not depend on the period $q$ of $t(n)\bmod d$. If $f(n)$ is the solution of (\ref{RecDef}) with initial values $f(0)=0, f(1)=1$ (the generalized Fibonacci function), one can take any period $q$ of $f(n)\bmod d$: We have \[ g(n)=(g(1)-ag(0))f(n) + g(0)f(n+1), \qquad n\in\N_0, \] hence, $q$ is a period of $g(n)\bmod d$, and similarly for $h(n)\bmod d$, thus $q$ is a period of $t(n)\bmod d$, too. \medskip \noindent 4. The mean value $M$ of $t(n)$ depends only on the determinant $c$ of the initial values of $g$ and $h$. It is unbounded as a function of $m=|c|$, even if $g(0)=0, g(1)=1$, since $k(d)\leq d4^{\omega(d)}$ (see \cite{Wal}) implies \[ M\geq \sum_{d\divides m}\frac{\varphi(d)}{d4^{\omega(d)}}=\prod_{p^j\|m} \left(1+\frac{p-1}{4p}j\right)\geq\left(\frac{9}{8}\right)^{\omega(m)} \] \medskip \noindent 5. The assumption $\gcd(b, c)=1$ in Theorem 2 is necessary, however, there is always some $n_0$ such that the function $\tilde{t}(n)=t(n+n_0)$ has the same mean value as $t(n)$ and the mean value formula holds true for $\tilde{t}$. \section{Proofs} We first need two lemmas, which are well-known for the classical Fibonacci function (see \cite{Hog}). \begin{Lem} Let $f:\N_0\to\Z$ be a solution of (\ref{RecDef}), and $d\in\N$. Then the function $n\mapsto f(n)\bmod d$ is periodic, and simply periodic if $\gcd(b, d)=1$. \end{Lem} \begin{proof} There are positive integers $n_11$. The equation $f(n+1)=af(n)+bf(n-1)$ implies $p\divides bf(n-1)$, hence, $p\divides b$. Similarly, $f(n)=af(n-1)+bf(n-2)$ implies $p\divides af(n-1)$, thus $p\divides a$. This contradicts the assumption $\gcd(a, b)=1$. (b). This follows by induction on $n$. (c). Let $L:=\{n\in\N_0: d\divides f(n)\}$. If $m, n\in L$, we get $m+n\in L$ by (b)., and if $m>n$, we have $f(m)=f(m-n)f(n+1)+bf(m-n-1)f(n)$, hence, $d\divides f(m-n)f(n+1)$, so $m-n\in L$ by (a). Take $n\in L$ and write $n=mk(d)+t$ with $0\leq t1\end{array}\right., \end{equation} the inner sum can be written as \[ \sum_{{1\leq n\leq q}\atop{s\divides t(n)}} \sum_{k\divides \gcd(t(n)/s, m/s)}\mu(k) = \sum_{k\divides \frac{m}{s}}\left(\mu(k)\sum_{{1\leq n\leq q}\atop{sk \divides t(n)}} 1\right). \] Set $d:=sk$; then \[ M=\sum_{d\divides m}\left(\ell(d)\sum_{k\divides d}\mu(k)\frac{d}{k}\right). \] We use $\sum_{d\divides n}\varphi(d)=n$ together with $(\ref{mu})$ and see $\sum_{k\divides d}\mu(k)\frac{d}{k}=\varphi(d)$. Hence, \[ M = \frac{1}{q}\sum_{d\divides m}\varphi(d)\#\{n\leq q: d\divides t(n)\} \] Since $g(0)=0, g(1)=1$, we have \[ h(n)=(h(1)-ah(0))g(n) + h(0)g(n+1), \] and by Lemma 2 (a), we obtain \[ t(n)=\gcd(g(n), h(0)g(n+1)) = \gcd(g(n), h(0)) = \gcd(g(n), m). \] We finally get by Lemma 2 (c) for every $d\divides m$ \[ \#\{n\leq q: d\divides t(n)\} = \sum_{{1\leq n\leq q}\atop{d\divides g(n)}} 1 = \sum_{{1\leq n\leq q}\atop{k(d)\divides n}} 1 = \frac{q}{k(d)}, \] and Theorem 2 is proven. \end{proofof} \begin{thebibliography}{3} \bibitem{McD} W. L. McDaniel, The g.c.d in Lucas sequences and Lehmer number sequences. {\em Fibonacci Quart.} {\bf 29} (1991), 24--29. \bibitem{Hog} V. E. Hoggatt, {\em Fibonacci and Lucas numbers}, Boston etc.: Houghton Mifflin Company IV, 1969. \bibitem{Wal} D. D. Wall, Fibonacci series modulo $m$, {\em Amer. Math. Monthly} {\bf 67} (1960), 525--532. \end{thebibliography} \bigskip \hrule \bigskip \noindent 2000 {\it Mathematics Subject Classification}: Primary 11B37; Secondary 11B39, 11A05. \noindent \emph{Keywords: } Greatest common divisor, recursive functions, periodic functions, mean values. \bigskip \hrule \bigskip \vspace*{+.1in} \noindent Received October 8 2003; revised version received January 27 2004. Published in {\it Journal of Integer Sequences}, February 16 2004. \bigskip \hrule \bigskip \noindent Return to \htmladdnormallink{Journal of Integer Sequences home page}{http://www.math.uwaterloo.ca/JIS/}. \vskip .1in \end{document} .