\documentclass[12pt,reqno]{amsart} \usepackage[usenames]{color} \usepackage[colorlinks=true, linkcolor=webgreen, filecolor=webbrown, citecolor=webgreen]{hyperref} \definecolor{webgreen}{rgb}{0,.5,0} \definecolor{webbrown}{rgb}{.6,0,0} \usepackage{color} \usepackage{fullpage} \usepackage{psfig} \usepackage{graphics,amsmath,amssymb} \usepackage{amsfonts} \usepackage{latexsym} \usepackage{epsf} \setlength{\textwidth}{6.5in} \setlength{\oddsidemargin}{.1in} \setlength{\evensidemargin}{.1in} \setlength{\topmargin}{-.5in} \setlength{\textheight}{8.9in} \newcommand{\seqnum}[1]{\href{http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=#1}{\underline{#1}}} \usepackage{amssymb} \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{corollary}{Corollary} \newtheorem*{main}{Main~Theorem} \newtheorem{lemma}{Lemma} \newtheorem{proposition}{Proposition} \theoremstyle{definition} \newtheorem{definition}{Definition} \theoremstyle{remark} \newtheorem*{notation}{Notation} \numberwithin{equation}{section} \begin{document} \begin{center} \epsfxsize=4in \leavevmode\epsffile{logo129.eps} \end{center} \begin{center} \vskip 1cm {\LARGE\bf A multidimensional version of a result of \\ \vskip .5cm Davenport-Erd\H{o}s} \vskip 1cm \large O-Yeat Chan, Geumlan Choi, and Alexandru Zaharescu\\ Department of Mathematics\\ University of Illinois \\ 1409 West Green Street\\ Urbana, IL 61801\\ USA \\ \href{mailto:ochan@math.uiuc.edu}{ochan@math.uiuc.edu}\\ \href{mailto:g-choi1@math.uiuc.edu}{g-choi1@math.uiuc.edu}\\ \href{mailto:zaharesc@math.uiuc.edu}{zaharesc@math.uiuc.edu} \end{center} \vskip .5in \begin{center} {\bf Abstract} \end{center} Davenport and Erd\H{o}s showed that the distribution of values of sums of the form \begin{equation*} S_h(x)=\sum_{m=x+1}^{x+h} \left(\frac mp \right), \end{equation*} where $p$ is a prime and $\left(\frac mp \right)$ is the Legendre symbol, is normal as $h, p\to\infty$ such that $\frac{\log h}{\log p}\to 0$. We prove a similar result for sums of the form \begin{equation*} S_h(x_1, \ldots, x_n)=\sum_{z_1=x_1+1}^{x_1+h} \cdots \sum_{z_n=x_n+1}^{x_n+h} \left( \frac {z_1+ \cdots+z_n}{p} \right). \end{equation*} \vskip .5in \section{Introduction}\label{sec1} Given a prime number $p$, an integer $x$ and a positive integer $h$, we consider the sum \[ S_h(x)=\sum_{m=x+1}^{x+h} \left(\frac mp \right), \] where here and in what follows $\left(\frac mp \right)$ denotes the Legendre symbol. The expected value of such a sum is $\sqrt h$. If $p$ is much larger than $h$, it is a very difficult problem to show that there is any cancellation in an individual sum $S_h(x)$ as above. The classical inequality of P\' olya-Vinogradov (see ~\cite{P}, ~\cite{V}) shows that $S_h(x)=O(\sqrt p\log p)$, and assuming the Generalized Riemann Hypothesis, Montgomery and Vaughan ~\cite{MV} proved that $S_h(x)=O(\sqrt p\log\log p)$. The results of Burgess ~\cite{B} provide cancellation in $S_h(x)$ for smaller values of $h$, as small as $p^{1/4}$. One does expect to have cancellation in $S_h(x)$ for $h>p^{\epsilon}$, for fixed $\epsilon>0$ and $p$ large. This would imply the well-known hypothesis of Vinogradov that the smallest positive quadratic nonresidue mod $p$ is $
0$ and $p$ large enough in terms of $\epsilon$. We mention that Ankeny ~\cite{A} showed that assuming the Generalized Riemann Hypothesis, the smallest positive quadratic nonresidue mod $p$ is $O(\log^2p)$. It is much easier to obtain cancellation, even square root cancellation, if one averages $S_h(x)$ over $x$. In fact, Davenport and Erd\H{o}s~\cite{DE} entirely solved the problem of the distribution of values of $S_h(x)$, $0\leq x
0$ such that \begin{equation}\label{eq:3-2-2} \left|\Phi_{n, p^{\prime}}(\lambda)-\Phi(\lambda) \right| \ge \delta, \quad \text{for all $p^{\prime}$}. \end{equation} By the two theorems of Helly (see the introduction to ~\cite{S}) there exists a subsequence $\{\Phi_{n, p^{\prime \prime}} \}$ of $\{\Phi_{n, p^{\prime}} \}$ which converges to a distribution $\Psi$ at every point of continuity, and \[ \int_{-\infty}^{\infty}t^r d \Psi(t)=\lim_{p^{\prime \prime} \to \infty }\int_{-\infty}^ {\infty} t^r d \Phi_{n, p^{\prime \prime}} =\int_{-\infty}^{\infty} t^r d \Phi (t). \] Since $\Phi$ is the only distribution with these special moments $\mu_1, \mu_2, \ldots$, we have $\Psi (t)= \Phi(t)$ for all $t$. This contradicts ~\eqref{eq:3-2-2}. Hence one concludes that, as $p \to \infty$, \[ \frac 1{p^n} M_{n, p}(\lambda)= \Phi_{n, p}( \lambda) \to \Phi(\lambda)=\frac {1}{\sqrt {2 \pi}} \int_{-\infty}^{\lambda}e^{-\frac 12 t^2} dt, \] which completes the proof of the theorem. \end{proof} We remark that $c_n$ can be explicitly computed for any given value of $n$. The following proposition provides an equivalent formulation of $c_n$, which allows for easier computations in higher dimensions. For any $n$, consider the polynomial in two variables \begin{equation*} g_n(X,Y)=\sum_{l=0}^{n-1}\left(\sum_{k=0}^l (-1)^k {\binom {n}{k}}{\binom {X+(l-k)Y+n-1}{n-1}}\right)^2. \end{equation*} Note that the total degree of $g_n(X,Y)$ is at most $2n-2$. \begin{proposition}\label{pp1} For any $n$, \begin{equation*} c_n = \sum_{k=0}^{2n-2} \frac{a_{n,k}}{k+1}\,, \end{equation*} where $a_{n,k}$ is the coefficient of $X^{k}Y^{2n-2-k}$ in $g_n(X,Y)$. \end{proposition} \begin{proof} We know that for fixed $n$ and $h\to\infty$, \begin{equation*} \sum_{m} N_m^2 = h^{2n-1}c_n+O_n(h^{2n-2}), \end{equation*} where $N_m=N_m(h,n)$ is the number of $n$-tuples $(a_1,\dots,a_n)$ such that $a_1+\cdots +a_n=m$, with $1\leq a_i \leq h$. Replacing $m$ by $m^\prime=m-n$ and each $a_i$ by $b_i=a_i-1$, we get $\sum_m N_m^2 = \sum_{m^\prime} (N^\prime_{m^\prime})^2$, where $N^\prime_{m^\prime}$ is the number of $n$-tuples $(b_1,\dots,b_n)$ such that $b_1+\cdots+b_n=m^\prime$, with $0\leq b_i \leq h-1$. Now, the number of ways to obtain a sum of $m^\prime$ from $n$ non-negative integers, with no restrictions, is $\binom {m^\prime+n-1}{n-1}$. If we restrict any fixed $b_i$ to satisfy the inequality $b_i\geq h$, then the number of ways drops to $\binom {m^\prime-h+n-1}{n-1}$. If we restrict any two $b_i, b_j$ to satisfy $b_i, b_j \geq h$ then we have $\binom {m^\prime-2h+n-1}{n-1}$ ways, and so on. Since for each $k$, there are $\binom {n}{k}$ ways to choose exactly $k$ of the $b_i$'s to be greater than $h$, we obtain by the inclusion-exclusion principle, \[ N^\prime_{m^\prime}=\sum_{0\leq k\leq m^\prime/h} (-1)^k {\binom {n}{k}}{\binom {m^\prime-kh+n-1}{n-1}}. \] So we have, for $lh \leq m^\prime < (l+1)h$, $0\leq l \leq n-1$, \[ N^\prime_{m^\prime} = \sum_{k=0}^l (-1)^k {\binom {n}{k}}{\binom {m^\prime-kh+n-1}{n-1}}. \] Replacing $m^\prime$ by $s+lh$, with $0\leq s\leq h-1$, we get \[ N^\prime_{s+lh} = \sum_{k=0}^l (-1)^k {\binom {n}{k}}{\binom {s+(l-k)h+n-1}{n-1}}. \] Therefore \[ \sum_{m^\prime} (N^\prime_{m^\prime})^2 = \sum_{s=0}^{h-1} \sum_{l=0}^{n-1}\bigg(\sum_{k=0}^l (-1)^k {\binom {n}{k}}{\binom {s+(l-k)h+n-1}{n-1}}\bigg)^2 \] \[=\sum_{s=0}^{h-1} g_n(s,h).\] It follows that \begin{equation}\label{AB1} \sum_{s=0}^{h-1} g_n(s,h)=h^{2n-1}c_n+O_n(h^{2n-2}). \end{equation} Now, the main contribution in $g_n(s,h)$ comes from the terms where the exponents of $s$ and $h$ add up to $2n-2$. Since for any $0\leq k\leq 2n-2$, \[ \sum_{s=0}^{h-1} s^k = \frac{1}{k+1}h^{k+1}+O_n(h^k), \] we obtain \begin{align*} \sum_{s=0}^{h-1} g_n(s,h) &= \sum_{s=0}^{h-1} \left(\sum_{k=0}^{2n-2} a_{n,k}s^kh^{2n-2-k} + \text{lower order terms} \right)\\ &=\sum_{k=0}^{2n-2} \sum_{s=0}^{h-1}a_{n,k}s^kh^{2n-2-k} + O_n(h^{2n-2})\\ &=\sum_{k=0}^{2n-2}\frac{a_{n,k}}{k+1}h^{2n-1} + O_n(h^{2n-2}). \end{align*} By combining this with (\ref{AB1}), we obtain the desired result. \end{proof} For $n=2, 3, 4, 5, 6$, one finds that $c_2=\frac 23$, $c_3=\frac{11}{20}$, $c_4=\frac {151}{315}$, $c_5=\frac {15619}{36288}$, $c_6=\frac {655177}{1663200}$. The numerator and the denominator of $c_n$ grow rapidly as $n$ increases. For instance, for $n=10$ and $n=25$ we have \begin{equation*} c_{10}=\frac{37307713155613}{121645100408832}\,, \end{equation*} and \begin{equation*} c_{25}=\frac{675361967823236555923456864701225753248337661154331976453} {34659935272607838226339154 60520201577706853740052480000000}\,. \end{equation*} One can also work with boxes instead of cubes, and obtain similar distribution results. For example, in dimension two, we may consider the sum \[ S_{h, k}(x,y)=\sum_{u=x+1}^{x+h} \sum_{v=y+1}^{y+k} \left( \frac {u+v}{p} \right), \] where $x$, $y$ are any integers and $h$, $k$ are positive integers, with $h \ge k$, say. Then, by using the same arguments as in the proof of Theorem~\ref{th1}, one can prove the following result. \begin{theorem}\label{th2} Let $h$, $k$ be functions of $p$ such that \[ h \ge k, \quad \frac hk \to \alpha, \quad k \to \infty, \quad \frac {\log k}{\log p} \to 0, \quad \text{as $p \to \infty$}. \] Denote $\beta=\sqrt {\alpha-\frac 13}$ and $\beta^{\prime}=\sqrt {1-\frac 1{3 \alpha}}$. Let $M_p(\lambda)$ be the number of pairs $(x, y)$ with $0 \le x, y