\documentclass[12pt,reqno]{article} \usepackage[usenames]{color} \usepackage{amssymb} \usepackage{graphicx} \usepackage{amscd} \usepackage[colorlinks=true, linkcolor=webgreen, filecolor=webbrown, citecolor=webgreen]{hyperref} \definecolor{webgreen}{rgb}{0,.5,0} \definecolor{webbrown}{rgb}{.6,0,0} \usepackage{color} \usepackage{fullpage} \usepackage{float} \usepackage{psfig} \usepackage{graphics,amsmath,amssymb} \usepackage{amsthm} \usepackage{amsfonts} \usepackage{latexsym} \usepackage{epsf} \setlength{\textwidth}{6.5in} \setlength{\oddsidemargin}{.1in} \setlength{\evensidemargin}{.1in} \setlength{\topmargin}{-.1in} \setlength{\textheight}{8.4in} \newcommand{\seqnum}[1]{\href{http://oeis.org/#1}{\underline{#1}}} \DeclareMathOperator{\lcm}{lcm} \def\mod{\!\pmod} \def\a{\alpha} \def\b{\beta} \def\g{{\rm g}} \def\m{\bf m} \def\n{{\rm n}} \def\ov{\overline} \def\s{{\rm s}} \def\C{\mathscr C} \def\G{\Gamma} \def\S{\mathcal S} \def\Z{\mathbb Z} \def\ts{\textstyle} \def\sig{\sigma} \def\es{\emptyset} \def\imp{\rightarrow} \def\pr{\prime} \def\sm{\setminus} \begin{document} \begin{center} \epsfxsize=4in \leavevmode\epsffile{logo129.eps} \end{center} \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{corollary}[theorem]{Corollary} \newtheorem{lemma}[theorem]{Lemma} \newtheorem{proposition}[theorem]{Proposition} \theoremstyle{definition} \newtheorem{definition}[theorem]{Definition} \newtheorem{example}[theorem]{Example} \newtheorem{conjecture}[theorem]{Conjecture} \theoremstyle{remark} \newtheorem{remark}[theorem]{Remark} \begin{center} \vskip 1cm{\LARGE\bf On a Special Case of the Frobenius Problem } \vskip 1cm \large Amitabha Tripathi \\ Department of Mathematics \\ Indian Institute of Technology \\ Hauz Khas \\ New Delhi -- 110016 \\ India \\ \href{atripath@maths.iitd.ac.in}{\tt atripath@maths.iitd.ac.in} \\ \end{center} \vskip .2 in \begin{abstract} For any set of positive and relatively prime integers $A$, the set of positive integers that are not representable as a nonnegative integral linear combination of elements of $A$ is always a non-empty finite set. Thus we may define ${\g}(A)$, ${\n}(A)$, ${\s}(A)$ to denote the largest integer in, the number of integers in, and the sum of integers in this finite set, respectively. We determine ${\g}(A)$, ${\n}(A)$, ${\s}(A)$ when $A=\{a,b,c\}$ with $a \mid \lcm(b,c)$. A particular case of this is when $A=\{k\ell,\ell m,mk\}$, with $k,\ell,m$ pairwise coprime. We also solve a related problem when $a \mid \lcm(b,c)$, thereby providing another proof of the formula for ${\g}(A)$. \end{abstract} \section{Introduction} \label{section1} The following problem was the third of the six problems in the Twenty-Fourth International Mathematical Olympiad, held in Paris on July 6--7, 1983: \begin{quote} Let $a,b,c$ be positive integers satisfying $(a,b)=(b,c)=(c,a)=1$. Show that $2abc-ab-bc-ca$ is the largest integer not representable as \[ xbc + yca + zab \] with nonnegative integers $x,y,z$. \end{quote} This is a special case of the well-known linear Diophantine problem, posed by Sylvester \cite{Syl84}, but known as the {\it Frobenius problem}, after G. Frobenius who was largely instrumental in popularizing the problem. Consider a finite set $A=\{a_1,\ldots,a_k\}$ of positive integers with $\gcd\,A:=\gcd(a_1,\ldots,a_k)=1$. Let $\G(A):=\{a_1x_1+\cdots+a_kx_k: x_i \in {\Z}_{\ge 0}\}$. Then ${\G}^c(A):={\Z}_{\ge 0} \sm \G(A)$ can be shown to be a {\it finite\/} set, and this allows us to define the {\it Frobenius number} ${\g}(A)$ and the {\it Sylvester number} ${\n}(A)$: \[ {\g}(A):= \max {\G}^c(A), \quad {\n}(A):= \big| {\G}^c(A) \big|. \] Here, and elsewhere, $|X|$ denotes the cardinality of the finite set $X$. The Frobenius problem is to determine ${\g}(A)$ and ${\n}(A)$ in the general case. For $A=\{a,b\}$, $\gcd(a,b)=1$, Sylvester \cite{Syl84} showed \[ {\g}(a,b) = ab-a-b, \quad {\n}(a,b) = \frac{1}{2}(a-1)(b-1). \] Exact values for ${\g}(A)$ have been known only for few cases when $|A|>2$ -- in some cases when the elements of $A$ satisfy a specific condition. For instance, ${\g}(k\ell,\ell m,mk)=2k\ell m-k\ell-\ell m-mk$ whenever $\gcd(k,\ell)=\gcd(\ell,m)=\gcd(m,k)=1$. On the other hand, bounds and algorithms to compute ${\g}(A)$, especially in the case $|A|=3$, have been a major source of research. Corresponding results for ${\n}(A)$ have been much rarer, even in special cases; refer to \cite{Ram05}. Brown and Shiue \cite{BS93} introduced the related problem of determining the function \[ {\s}(A):= \sum_{n \in {\G}^c(A)} n, \] and found \[ {\s}(a,b) = \frac{1}{12}(a-1)(b-1)(2ab-a-b-1) \] when $\gcd(a,b)=1$; also see \cite{Tri08}. Tripathi \cite{Tri03} introduced the following variation on the Frobenius problem. The set ${\G}(A)$ is closed under addition, and so $n+{\G}(A) \subseteq {\G}(A)$ whenever $n \in {\G}(A)$. It is conceivable that $n \in {\G}^c(A)$ satisfy a slightly modified condition, replacing ${\G}(A)$ by ${\G}(A) \sm \{0\}$. In fact, ${\g}(A)$ is clearly the largest number satisfying such a condition. Thus we study the set given by \[ {\S}^{\star}(A):= \big\{n \,\in\, {\G}^c(A): n+{\G}^{\star}(A) \subset {\G}^{\star}(A) \big\}, \] where ${\G}^{\star}(A)={\G}(A) \sm \{0\}$. In this note, we consider the set $A=\{a,b,c\}$ with $\gcd(a,b)=1$, where $a$ divides $\lcm(b,c)$. Observe that the IMO problem introduced at the beginning of this article, involving triples $a=k\ell$, $b=\ell m$, $c=mk$ with $k,\ell,m$ pairwise coprime, satisfies the condition $a$ divides $\lcm(b,c)$. We determine ${\g}(A)$, ${\n}(A)$, ${\s}(A)$, and the set ${\S}^{\star}(A)$, giving more than one proof for each of the results for ${\g}(A)$ and ${\n}(A)$. We list all results that we will base our study on in Section~\ref{prelim}, and prove our main results, listed as Theorem \ref{main} and Corollary \ref{main_corollary}, in Section~\ref{section3}. The results of Corollary \ref{main_corollary} follow directly from those of Theorem \ref{main}, and the results for ${\g}(A)$, ${\n}(A)$ and ${\S}^{\star}(A)$ are also special cases of \cite[Theorem 1, 2]{Tri06}. The proofs of the results in Corollary \ref{main_corollary} are omitted. \begin{theorem} \label{main} Let $A=\{a,b,c\}$, where $\gcd(a,b,c)=1$ and $a \mid \lcm(b,c)$. Then \begin{itemize} \item[{\rm (a)}] \[ {\g}(a,b,c) = \lcm(a,b) + \lcm(a,c) - (a+b+c). \] \item[{\rm (b)}] \[ {\n}(a,b,c) = \frac{1}{2}\Big( \lcm(a,b) + \lcm(a,c) - (a+b+c) + 1\Big). \] \item[{\rm (c)}] \begin{eqnarray*} {\s}(a,b,c) & = & \frac{1}{12} \Big( a^2 + b^2 + c^2 + 3abc + 3(ab+bc+ca) - 3(a+b+c)\big(\lcm(a,b)+\lcm(a,c)\big) \\ & & + 2\big( \big(\lcm(a,b)\big)^2+\big(\lcm(a,c)\big)^2 \big) - 1 \Big). \end{eqnarray*} \item[{\rm (d)}] \[ {\S}^{\star}(\{a,b,c\}) = \Big\{\lcm(a,b) + \lcm(a,c) - (a+b+c)\Big\}. \] \end{itemize} \end{theorem} \begin{corollary} \label{main_corollary} Let $k,\ell,m$ be pairwise coprime, positive integers. If ${\sig}_1=k+\ell+m$, ${\sig}_2=k\ell+\ell m+mk$, and ${\sig}_3=k\ell m$, then \begin{eqnarray*} {\g}(k\ell,\ell m,mk) = 2{\sig}_3 - {\sig}_2, \quad {\n}(k\ell,\ell m,mk) = \frac{1}{2}\big(2{\sig}_3 - {\sig}_2 + 1\big), \\ {\s}(k\ell,\ell m,mk) = \frac{1}{12} \big( 7{\sig}_3^2 - 6{\sig}_2\, {\sig}_3 + {\sig}_2^2 + {\sig}_1\,{\sig}_3 - 1 \big), \quad {\S}^{\star}\big(\{k\ell,\ell m,mk\}\big) = \big\{2{\sig}_3 - {\sig}_2\big\}. \end{eqnarray*} \end{corollary} \section{Preliminary results} \label{prelim} Suppose $A$ is any set of positive integers with $\gcd A=1$, and let $a \in A$. For each residue class ${\bf C}$ modulo $a$, let ${\m}_{\bf C}$ denote the least integer in ${\G}(A) \cap {\bf C}$. It is well known that the functions ${\g}$, ${\n}$ and ${\s}$ are easily determined from the values of ${\m}_{\bf C}$. The following result, part (i) of which is due to Brauer and Shockley \cite{BS62}, part (ii) to Selmer \cite{Sel77}, and part (iii) to Tripathi \cite{Tri08}, is often a key step in this determination. \begin{proposition} {\bf \cite{BS62,Sel77,Tri08}} \label{BSST} \\ Let $A$ be any set of positive integers with $\gcd (A)=1$. For any $a \in A$, \begin{eqnarray*} {\g}(A) = \left(\max_{\bf C}\: {\m}_{\bf C}\right) - a, \quad {\n}(A) = \frac{1}{a} \sum_{\bf C}\: {\m}_{\bf C} - \frac{1}{2}(a-1), \\ {\s}(A) = \frac{1}{2a} \sum_{\bf C} {{\m}_{\bf C}}^2 - \frac{1}{2} \sum_{\bf C} {\m}_{\bf C} + \frac{1}{12}(a^2-1), \end{eqnarray*} where the maximum and the sums are taken over all nonzero classes $\bf C$ modulo $a$. \end{proposition} Generating functions naturally enter as a tool in the study of the Frobenius problem. The results in Proposition \ref{SBS} are the combinatorial analogues of the corresponding results in Proposition \ref{BSST}. The generating function $f_A$ for the set $A$ can be used to evaluate the functions ${\g}$ and ${\n}$ (this is almost folklore, but the evaluation of ${\n}$ in this manner actually appears in \cite{Syl84}). The use of the function $f_A$ to evaluate ${\s}(A)$ is due to Brown and Shiue \cite{BS93}; in fact, they used this method to determine ${\s}(a,b)$. \begin{proposition} {\bf \cite{BS93,Syl84}} \label{SBS} \\ Let $A$ be any set of positive integers with $\gcd (A)=1$. Set \[ f_A(t) = \sum_{a \in A} t^a. \] Then \[ f_{{\G}^c(A)}(t) = \frac{1}{1-t} - f_{{\G}(A)}(t), \] and \[ {\g}(A) = \text{deg}\,f_{{\G}^c(A)}(t), \quad {\n}(A) = \lim_{t \imp 1} f_{{\G}^c(A)}(t), \quad {\s}(A) = \lim_{t \imp 1} f_{{\G}^c(A)}^{\pr}(t). \] \end{proposition} The following reduction formulae for ${\g}(A)$, due to Johnson \cite{Joh60} for the three variable case and to Brauer and Shockley \cite{BS62} for the general case, and for ${\n}(A)$ due to R{\o}dseth \cite{Rod78}, are useful in cases when all but one member of $A$ share a common divisor greater than $1$. \begin{proposition} {{\bf \cite{BS62,Rod78}}} \label{BSR} \\ Let $A$ be any set of positive integers with $\gcd (A)=1$. If $a \in A$ is such that $\gcd (A \sm \{a\})=d$, and $A^{\pr}=\frac{1}{d}\big(A \sm \{a\}\big)$, then \[ {\g}\big(A\big) = d \cdot {\g}\big(A^{\pr} \cup \{a\}\big) + a(d-1), \quad {\n}\big(A\big) = d \cdot {\n}\big(A^{\pr} \cup \{a\}\big) + \ts\frac{1}{2}(a-1)(d-1). \] \end{proposition} The set ${\S}^{\star}(A)$ consists of integers $n$ in ${\G}^c(A)$ such that translating the set of positive integers in ${\G}(A)$ by $n$ results in a subset of ${\G}(A)$. Since ${\g}(A) \in {\S}^{\star}(A)$, determining ${\S}^{\star}(A)$ ensures that ${\g}(A)$ is also determined. The following result is due to Tripathi \cite{Tri03}. \begin{proposition} {\bf \cite{Tri03}} \label{T} \\ Let $A$ be any set of positive integers with $\gcd (A)=1$. Let $a \in A$, and let ${\m}_x$ denote the least integer in ${\G}(A)$ congruent to $x$ modulo $a$, $1 \le x \le a-1$. Then \[ {\S}^{\star}(A) = \big\{{\m}_x-a: {\m}_x + {\m}_y \ge {\m}_{x+y} +a \;\mbox{for}\; 1 \le y \le a-1 \big\}. \] \end{proposition} \section{Main results} \label{section3} Throughout this section, we consider the set $A=\{a,b,c\}$ with $\gcd(a,b,c)=1$ and $a \mid \lcm(b,c)$. We prove Theorem \ref{main} by using the results in Section~\ref{prelim}. More specifically, we use Proposition \ref{BSST} and Proposition \ref{BSR} to determine both ${\g}(A)$ and ${\n}(A)$. We also use Proposition \ref{BSST} to determine ${\s}(A)$. We use Proposition \ref{SBS} to determine ${\g}(A)$ and ${\n}(A)$ via the proofs using Proposition \ref{BSST}. Finally, we use Proposition \ref{T} to determine ${\S}^{\star}(A)$, which incidentally also provides another proof for the formula for ${\g}(A)$. The result of Corollary \ref{main_corollary} is a direct consequence of Theorem \ref{main}; the details are omitted. \subsection{Determining ${\g}(A)$ and ${\n}(A)$ from Proposition \ref{BSR}} \label{one} We first use the reduction formula given in Proposition \ref{BSR} to determine both ${\g}(A)$ and ${\n}(A)$. The following lemma is crucial to many results in this section. \begin{lemma} \label{a=rs} Suppose $a,b,c$ are positive integers, with $\gcd(a,b,c)=1$. If $a \mid \lcm(b,c)$, then $a=\gcd(a,b) \cdot \gcd(a,c)$. \end{lemma} \begin{proof} Let $p$ be a prime divisor of $a$, and let $p^{\a}$, $p^{\b}$, $p^{\gamma}$ be the highest power of $p$ dividing $a$, $b$, $c$, respectively. Then $0=\min \{\b,\gamma\}<\a \le \max\{\b,\gamma\}$. Thus $a=rs$, where $r=\gcd(a,b)$, $s=\gcd(a,c)$ and $\gcd(r,s)=1$. \end{proof} \noindent{\bf Proof of Theorem \ref{main}, (a) and (b).} \noindent From Lemma \ref{a=rs} we have $a=rs$, where $r=\gcd(a,b)$, $s=\gcd(a,c)$ and $\gcd(r,s)=1$. Note that $bs=ab/r=\lcm(a,b)$ and $cr=ac/s=\lcm(a,c)$. If $1 \in A$, then ${\G}(A)={\Z}_{\ge 0}$, and so we define ${\g}(A)=-1$ in this case. We apply Proposition \ref{BSR}. \begin{itemize} \item[{\rm (a)}] \begin{eqnarray*} {\g}(a,b,c) & = & r \cdot {\g}\left(\ts\frac{a}{r},\ts\frac{b}{r},c\right) + c(r-1) \\ & = & r \Big( s \cdot {\g}\left(1,\ts\frac{b}{r},\ts\frac{c}{s}\right) + \ts\frac{b}{r}(s-1) \Big) + c(r-1) \\ & = & a \cdot {\g}\left(1,\ts\frac{b}{r},\ts\frac{c}{s}\right) + b(s-1) + c(r-1) \\ & = & bs + cr - a - b - c \\ & = & \lcm(a,b) + \lcm(a,c) - (a+b+c). \end{eqnarray*} \item[{\rm (b)}] \begin{eqnarray*} {\n}(a,b,c) & = & r \cdot {\n}\left(\ts\frac{a}{r},\ts\frac{b}{r},c\right) + \ts\frac{1}{2}(c-1)(r-1) \\ & = & r \Big( s \cdot {\n}\left(1,\ts\frac{b}{r},\ts\frac{c}{s}\right) + \ts\frac{1}{2}\left(\ts\frac{b}{r}-1\right)(s-1) \Big) + \ts\frac{1}{2}(c-1)(r-1) \\ & = & a \cdot {\n}\left(1,\ts\frac{b}{r},\ts\frac{c}{s}\right) + \ts\frac{1}{2}(b-r)(s-1) + \ts\frac{1}{2}(c-1)(r-1) \\ & = & \ts\frac{1}{2}(b-r)(s-1) + \ts\frac{1}{2}(c-1)(r-1) \\ & = & \ts\frac{1}{2}\big( bs + cr - rs - b - c + 1 \big) \\ & = & \ts\frac{1}{2}\Big( \lcm(a,b) + \lcm(a,c) - (a+b+c) + 1\Big). \end{eqnarray*} \end{itemize} \hfill $\square$ \subsection{Determining ${\g}(A)$, ${\n}(A)$ and ${\s}(A)$ from Proposition \ref{BSST}} \label{two} We next use Proposition \ref{BSST} to determine ${\g}(A)$, ${\n}(A)$, and ${\s}(A)$. This requires the determination of ${\m}_{\bf C}$ for each nonzero residue class ${\bf C}$ modulo $a$. We note that the maximum and the sum in Proposition \ref{BSST} may also be taken to include ${\m}_0=0$. \begin{theorem} \label{m_i} Let $A=\{a,b,c\}$, where $\gcd(a,b,c)=1$ and $a \mid \lcm(b,c)$. Let ${\m}_i$ denote the least integer in ${\G}(\{a,b,c\})$ which is congruent to $i$ modulo $a$. Then \[ \big\{ {\m}_i: 0 \le i \le a-1 \big\} = \big\{ bx+cy: 0 \le x \le s-1, 0 \le y \le r-1 \big\},\] where $r=\gcd(a,b)$ and $s=\gcd(a,c)$. \end{theorem} \begin{proof} Suppose $bx_1+cy_1 \equiv bx_2+cy_2\mod{a}$ with $0 \le x_1, x_2 \le s-1$ and $0 \le y_1, y_2 \le r-1$. Then $bx_0 \equiv cy_0\mod{a}$ with $|x_0|0$ and $y>0$, then \[ \big(b(s-1)+c(r-1)\big) + (bx+cy) = b(x-1)+c(y-1) + \lcm(a,b) + \lcm(a,c) \ge b(x-1)+c(y-1) + 2a. \] If $x=0$, then $y>0$ and \[ \big(b(s-1)+c(r-1)\big) + (bx+cy) = b(s-1)+c(y-1) + \lcm(a,c) \ge b(s-1)+c(y-1) + a. \] If $y=0$, then $x>0$ and \[ \big(b(s-1)+c(r-1)\big) + (bx+cy) = b(x-1)+c(r-1) + \lcm(a,b) \ge b(x-1)+c(r-1) + a. \] Hence $b(s-1)+c(r-1)-a \in {\S}^{\star}$ by Proposition \ref{T}. Suppose $x_0 \in [0,s-1]$ and $y_0 \in [0,r-1]$, with $(x_0,y_0) \ne (0,0), (s-1,r-1)$. Then $b(s-1-x_0)+c(r-1-y_0)$ is of form ${\m}_x$ and \[ (bx_0+cy_0) + b(s-1-x_0)+c(r-1-y_0) = b(s-1)+c(r-1), \] so that Proposition \ref{T} fails to hold for at least one $x \in [1,a-1]$. Hence $bx_0+cy_0-a \notin {\S}^{\star}$ if $(x_0,y_0) \ne (s-1,r-1)$. This completes the proof of this theorem. \hfill $\square$ \begin{remark} For any set of positive integers $A$ with $\gcd A=1$, it can be shown that ${\n}(A)=\frac{1}{2}\big(1+{\g}(A)\big)$ implies ${\S}^{\star}(A)=\{{\g}(A)\}$. \end{remark} \begin{remark} The results of this paper cannot be easily extended to the case $A=\{a,b_1,\ldots,b_k\}$ where $\gcd(a,b_1,\ldots,b_k)=1$ and $a \mid \lcm(b_1,\ldots,b_k)$ for $k>2$. This is because the divisibility condition $a \mid \lcm(b_1,\ldots,b_k)$ does not imply $a=r_1\cdots r_k$ where $r_i=\gcd(a,b_i)$ for $1 \le i \le k$. \end{remark} \section{Acknowledgments} The author wishes to thank two anonymous referees for several helpful suggestions, including for the results using generating functions. \begin{thebibliography}{99} \bibitem{BS93} T. C. Brown and P. J. Shiue, A remark related to the Frobenius problem, {\it Fibonacci Quart.\/} {\bf 31} (1993), 31--36. \bibitem{BS62} A. Brauer and J. E. Shockley, On a problem of Frobenius, {\it J. Reine Angew. Math.\/} {\bf 211} (1962), 215--220. \bibitem{Joh60} S. M. Johnson, A linear diophantine problem, {\it Canad. J. Math.\/} {\bf 12} (1960), 390--398. \bibitem{Ram05} J. L. Ram\'{i}rez Alfons\'{i}n, {\it The Diophantine Frobenius Problem\/}, Oxford Lecture Series in Mathematics and its Applications, No.~30, Oxford University Press, 2005. \bibitem{Rod78} \O. J. R\o dseth, On a linear diophantine problem of Frobenius, {\it J. Reine Angew. Math.\/} {\bf 301} (1978), 171--178. \bibitem{Sel77} E. S. Selmer, On the linear diophantine problem of Frobenius, {\it J. Reine Angew. Math.\/} {\bf 293/294} (1977), 1--17. \bibitem{Syl84} J. J. Sylvester, Problem 7382, in W. J. C. Miller, ed., Mathematical Questions, with their Solutions, from the ``Educational Times" {\bf 41} (1884), p.~21. Solution by W. J. Curran Sharp. \bibitem{Tri03} A. Tripathi, On a variation of the coin exchange problem for arithmetic progressions, {\it Integers\/} {\bf 3} (2003), Article A01. \bibitem{Tri06} A. Tripathi, On a linear diophantine problem of Frobenius, {\it Integers\/} {\bf 6} (2006), Article A14. \bibitem{Tri08} A. Tripathi, On sums of positive integers that are not of the form $ax+by=n$, {\it Amer. Math. Monthly\/} {\bf 115} (2008), 363--364. \end{thebibliography} \bigskip \hrule \bigskip \noindent 2010 {\it Mathematics Subject Classification}: Primary 11D07. \noindent \emph{Keywords: } linear Diophantine equation, Frobenius problem. \bigskip \hrule \bigskip \vspace*{+.1in} \noindent Received April 27 2017; revised versions received May 1 2017; June 15 2017; June 26 2017. Published in {\it Journal of Integer Sequences}, July 2 2017. \bigskip \hrule \bigskip \noindent Return to \htmladdnormallink{Journal of Integer Sequences home page}{http://www.cs.uwaterloo.ca/journals/JIS/}. \vskip .1in \end{document} .