\documentclass[12pt,reqno]{article} \usepackage[usenames]{color} \usepackage{amssymb} \usepackage{graphicx} \usepackage{amscd} \usepackage{tikz} \usepackage[colorlinks=true, linkcolor=webgreen, filecolor=webbrown, citecolor=webgreen]{hyperref} \definecolor{webgreen}{rgb}{0,.5,0} \definecolor{webbrown}{rgb}{.6,0,0} \usepackage{color} \usepackage{fullpage} \usepackage{float} \usepackage{psfig} \usepackage{graphics,amsmath,amssymb} \usepackage{amsthm} \usepackage{amsfonts} \usepackage{latexsym} \usepackage{epsf} \setlength{\textwidth}{6.5in} \setlength{\oddsidemargin}{.1in} \setlength{\evensidemargin}{.1in} \setlength{\topmargin}{-.1in} \setlength{\textheight}{8.4in} \newcommand{\seqnum}[1]{\href{http://oeis.org/#1}{\underline{#1}}} \begin{document} \begin{center} \epsfxsize=4in \leavevmode\epsffile{logo129.eps} \end{center} \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{corollary}[theorem]{Corollary} \newtheorem{lemma}[theorem]{Lemma} \newtheorem{proposition}[theorem]{Proposition} \newtheorem{question}[theorem]{Question} \theoremstyle{definition} \newtheorem{definition}[theorem]{Definition} \newtheorem{example}[theorem]{Example} \newtheorem{conjecture}[theorem]{Conjecture} \theoremstyle{remark} \newtheorem{remark}[theorem]{Remark} \begin{center} \vskip 1cm{\LARGE\bf Constructing Pseudo-Involutions \\ \vskip .1in in the Riordan Group } \vskip 1cm \large Dev Phulara\\ National Security Agency\\ Fort Meade, MD 20755\\ USA\\ \href{mailto:drphula@nsa.gov}{\tt drphula@nsa.gov} \\ \href{mailto:phulara@comcast.net}{\tt phulara@comcast.net} \\ \ \\ Louis Shapiro\\ Howard University\\ Washington, DC 20059\\ USA\\ \href{mailto:lshapiro@howard.edu}{\tt lshapiro@howard.edu}\\ \end{center} \vskip .2 in \begin{abstract} Involutions and pseudo-involutions in the Riordan group are interesting because of their numerous applications. In this paper we study involutions using sequence characterizations of the Riordan arrays. For a given $B$-sequence we find the unique function $f(z)$ such that the array $\big(g(z),f(z)\big)$ is a pseudo-involution. As a combinatorial application, we find the interpretation of each entry in the Bell array $\big(g(z),f(z)\big)$ with a given $B$-sequence. \end{abstract} \section{Introduction}\label{sec:introduction} A Riordan array originally introduced by Shapiro et al.\ \cite{SGWW} is defined in terms of generating functions of its columns. Let $g(z)=g_0+g_1z+g_2z^2+\cdots$, $g_0\neq 0$ and $f(z)= f_1z+f_2z^2+f_3z^3+\cdots$, $f_1\neq 0$ be two formal power series. The Riordan array generated by $g(z)$ and $f(z)$ is an infinite lower triangular array $D$ whose $k$th column has the generating function $g(z)\big(f(z)\big)^k$ for all $k\geq 0$. We denote $D$ by $\big(g(z),f(z)\big)$. In other words $D=(d_{n,k})_{n,k\geq 0}$ is Riordan if and only if there exist two generating functions $g(z)$ and $f(z)$ such that $d_{n,k}$ is the coefficient of $z^n$ in the expansion of $g(z)\big(f(z)\big)^k$. The set $\mathcal R$ of all Riordan arrays forms a group under the matrix multiplication operation. In terms of generating functions, the product of two arrays $\big(g(z),f(z)\big)$ and $\big(\alpha(z),\beta(z)\big)$ can be written as \[ \big(g(z),f(z)\big)\cdot \big(\alpha(z),\beta(z)\big) = \big(g(z)\alpha(f(z)),\beta(f(z))\big). \] The usual identity matrix $(1,z)$ serves as the group identity and for any $\big(g(z),f(z)\big)\in\mathcal R$, $\big(\frac{1}{g(\overline{f}(z))},\overline{f}(z)\big)$ is its inverse, where $\overline{f}$ represents the compositional inverse of $f$. Note that the original definitions of Riordan array are based on column construction. Merlini et al.\ \cite{MRSV} and Sprugnoli \cite{SP} characterized Riordan arrays using two sequences called the $A$-sequence and the $Z$-sequence which enables us to construct the Riordan array horizontally. That is each entry in the Riordan array can be written as a linear combination of entries in the previous row. More precisely we have \begin{theorem} An array $D=(d_{n,k})_{n,k\geq 0}$ is Riordan if and only if there exist unique sequences $A = (a_0, a_1, a_2,\ldots)$ and $Z= (z_0, z_1, z_2,\ldots)$ such that \begin{enumerate} \item [\rm 1.] $d_{n+1,k+1}=\sum_{i=0}^{\infty}a_id_{n,k+i}$ and \item [\rm 2.] $d_{n+1,0} = \sum_{i=0}^{\infty}z_id_{n,i}$. \end{enumerate} \end{theorem} The sequences $A$ and $Z$ in this theorem are called the $A$-sequence and $Z$-sequence respectively. See also \cite{HS}. See \cite{CKS} for another characterization of Riordan arrays (in terms of Stieltjes transform matrix). See also \cite{HSh}. A nontrivial element $D = \big(g(z),f(z)\big)\in \mathcal R$ is an involution if and only if $D^2=I$. Let $M=(1,-z)$, that is $M$ is a diagonal matrix with $(1,-1,1,-1,\ldots)$ along the diagonal. An element $D=\big(g(z),f(z)\big)$ is a pseudo-involution if and only if $DM$ is an involution or equivalently $MD$ is an involution or $D^{-1}=MDM$. See \cite{CN, CK, CJS, CJKS, CKS1} for more information. In this paper we study pseudo-involutions via $B$-sequences. It is an important fact that the $A$-sequence uniquely determines the generating function $f$. One version is $f(z)=zA(f(z))$ or equivalently $z = \overline{f}(z)A(z)$. This could be called the second fundamental theorem of the Riordan group. A ``dot" diagram of this is \begin{center} \begin{tikzpicture} \draw (0,0)rectangle(1,1); \draw (1,0)rectangle(1,1); \draw (2,0)rectangle(1,1); \draw (3,0)rectangle(1,1); \draw (4,0)rectangle(1,1); \draw (5,0)rectangle(1,1); \draw (1,-1)rectangle(1,1); \draw (2,-1)rectangle(1,1); \draw (1.5,-0.5)circle [x radius = 0.2cm, y radius = 0.2 cm]; \node at (0.5,0.5){\footnotesize{$a_0$}}; \node at (1.5,0.5){\footnotesize{$a_1$}}; \node at (2.5,0.5){\footnotesize{$a_2$}}; \node at (3.5,0.5){\footnotesize{$a_3$}}; \node at (4.5,0.5){\footnotesize{$a_4$}}; \node at (5.5,0.5){\footnotesize{$\cdots$}}; \node at (1.5,-0.5){\footnotesize{$\times$}}; \end{tikzpicture} \end{center} However there are many situations where it is useful to expand to an $A$-matrix \cite{MRSV} \begin{center} \begin{tikzpicture} \draw (0,0)rectangle(1,1); \draw (1,0)rectangle(2,1); \draw (2,0)rectangle(3,1); \draw (-1,1)rectangle(0,2); \draw (0,1)rectangle(1,2); \draw (1,1)rectangle(2,2); \draw (2,1)rectangle(3,2); \draw (-1,2)rectangle(0,3); \draw (0,2)rectangle(1,3); \draw (1,2)rectangle(2,3); \draw (2,2)rectangle(3,3); \draw (-1,3) -- (-1,4) -- (4,4) --(4,0) -- (3,0); \node at (-0.5,3.5){\footnotesize{$\cdots$}}; \node at (1.5,3.5){\footnotesize{$\cdots$}}; \node at (3.5,2.5){\footnotesize{$\cdots$}}; \node at (3.5,1.5){\footnotesize{$\cdots$}}; \node at (3.5,0.5){\footnotesize{$\cdots$}}; \node at (0.5,0.5){\footnotesize{$\times$}}; \draw (0.5,0.5)circle [x radius = 0.2cm, y radius = 0.2 cm]; \node at (1.5,0.5){\footnotesize{$a_{0,2}$}}; \node at (2.5,0.5){\footnotesize{$a_{0,3}$}}; \node at (-0.5,1.5){\footnotesize{$a_{1,0}$}}; \node at (0.5,1.5){\footnotesize{$a_{1,1}$}}; \node at (1.5,1.5){\footnotesize{$a_{1,2}$}}; \node at (2.5,1.5){\footnotesize{$a_{1,3}$}}; \node at (-0.5,2.5){\footnotesize{$a_{2,0}$}}; \node at (0.5,2.5){\footnotesize{$a_{2,1}$}}; \node at (1.5,2.5){\footnotesize{$a_{2,2}$}}; \node at (2.5,2.5){\footnotesize{$a_{2,3}$}}; \end{tikzpicture} \end{center} A modest example is given by \begin{center} \begin{tikzpicture} \draw (0,0)rectangle(1,1); \draw (-1,1)rectangle(0,2); \draw (0,1)rectangle(1,2); \draw (1,1)rectangle(2,2); \draw (0,2)rectangle(1,3); \node at (0.5,0.5){\footnotesize{$\times$}}; \draw (0.5,0.5)circle [x radius = 0.2cm, y radius = 0.2 cm]; \node at (-0.5,1.5){\footnotesize{$1$}}; \node at (1.5,1.5){\footnotesize{$1$}}; \node at (0.5,2.5){\footnotesize{$1$}}; \end{tikzpicture} \end{center} This produces the large Schr\"oder numbers. Recently Merlini and Sprugnoli \cite{MS} studied binary words avoiding certain patterns using $A$-matrices such as \begin{center} \begin{tikzpicture}[scale=2] \draw[step=.5cm, dashed] (-1,-1) grid (1,2.5); \filldraw[fill = white!20] (-0.5,0) circle (0.17 cm); \filldraw[fill = white!20] (-0.5,0.5) circle (0.17 cm); \filldraw[fill = white!20] (-0.5,1) circle (0.17 cm); \filldraw[fill = white!20] (-0.5,2) circle (0.17 cm); \node at (-0.5,0) {\footnotesize{1}}; \node at (-0.5,0.5) {\footnotesize{$c_2$}}; \node at (-0.5,1) {\footnotesize{$c_4$}}; \node at (-0.5,2) {\footnotesize{$c_q$}}; \filldraw (-0.5,1.4) circle (0.03 cm); \filldraw (-0.5,1.6) circle (0.03 cm); \filldraw[fill = white!20] (0,0) circle (0.19 cm); \filldraw[fill = white!20] (0,0.5) circle (0.19 cm); \filldraw[fill = white!20] (0,1) circle (0.19 cm); \filldraw[fill = white!20] (0,2) circle (0.19 cm); \filldraw (0,-0.5) circle (0.07 cm); \node at (0,0) {\tiny{$-c_2$}}; \node at (0,0.5) {\tiny{$-c_4$}}; \node at (0,1) {\tiny{$-c_6$}}; \node at (0,2) {\tiny{$-c_{q-2}$}}; \filldraw (0,1.4) circle (0.03 cm); \filldraw (0,1.6) circle (0.03 cm); \filldraw[fill = white!20] (0.5,-0.5) circle (0.17 cm); \filldraw[fill = white!20] (0.5,0) circle (0.17 cm); \filldraw[fill = white!20] (0.5,0.5) circle (0.17 cm); \filldraw[fill = white!20] (0.5,1) circle (0.17 cm); \filldraw[fill = white!20] (0.5,2) circle (0.17 cm); \node at (0.5,-0.5) {\footnotesize{$1$}}; \node at (0.5,0) {\footnotesize{$c_2$}}; \node at (0.5,0.5) {\footnotesize{$c_4$}}; \node at (0.5,1) {\footnotesize{$c_6$}}; \node at (0.5,2) {\footnotesize{$c_{q-2}$}}; \filldraw (0.5,1.4) circle (0.03 cm); \filldraw (0.5,1.6) circle (0.03 cm); \end{tikzpicture} \end{center} Here is a picture of the $A$-matrix that produces the $B$-sequence. \begin{center} \begin{tikzpicture} \draw (0,0)rectangle(1,1); \draw (0,1)rectangle(1,2); \draw (-1,1)rectangle(0,2); \draw (1,2)rectangle(2,3); \draw (2,3)rectangle(3,4); \draw (3,4)rectangle(4,5); \node at (3.4,4.4){{$\cdot$}}; \node at (3.5,4.5){{$\cdot$}}; \node at (3.6,4.6){{$\cdot$}}; \node at (0.5,0.5){\footnotesize{$\times$}}; \draw (0.5,0.5)circle [x radius = 0.2cm, y radius = 0.2 cm]; \node at (0.5,1.5){\footnotesize{$b_0$}}; \node at (1.5,2.5){\footnotesize{$b_1$}}; \node at (-0.5,1.5){\footnotesize{$1$}}; \node at (2.5,3.5){\footnotesize{$b_2$}}; \end{tikzpicture} \end{center} See also \cite{RIMA} for several online software tools for exploring Riordan arrays. This paper is organized as follows. In Section~\ref{PI} we present some ways of constructing pseudo-involutions. In Section~\ref{Bseq} we discuss those pseudo-involutions via $B$-sequences, we present a list of 24 examples, and we also present an explicit formula to compute the $A$-sequence of a pseudo-involution with a given $B$-sequence. Finally in Section~\ref{Appl} we present combinatorial interpretations for all involutions in the Bell subgroup. \section{(Pseudo)-involutions}\label{PI} Given a formal power series $g(z)=1+\sum_{n\geq 1}g_nz^n$, we want to find a generating function $f(z)$ such that $\big(g(z),f(z)\big)^2=I=(1,z)$. For such $f(z)$, we must have $g(z)g(f(z))=1$. That is $g(f(z))=\frac{1}{g(z)}$. We first study a special case in which $g(z)$ can be expressed as $g=1+zg^k$, for some $k\in\mathbb{N}$. \begin{theorem}\label{th:involution} Let $g(z)=1+\sum_{n\geq 1}g_nz^n$ be a power series where $g=1+zg^k$, for some $k\in\mathbb{N}$. Then $\big(g(z),-z(g(z))^{2k-1}\big)^2=I$. \end{theorem} \begin{proof} Since $g(z)=1+zg^k$, we can write $g$ as \begin{align*} g(z) &= \frac{1}{1-zg^{k-1}}\\ &=\big(1-zg^{k-1}\big)^{-1}.\\ \end{align*} So $zg^{k-1} =z(1-zg^{k-1})^{-(k-1)}$. Now set \begin{equation}\label{eq:1} F=F(z)=zg^{k-1}. \end{equation} Then $F=z(1-F)^{-(k-1)}$. Apply $\overline{F}$ to this equation to get $$z=\overline{F}(1-z)^{-(k-1)}.$$ Then \begin{equation}\label{eq:2} \overline{F}=z(1-z)^{k-1}. \end{equation} Starting with Eq.~\ref{eq:1}, we get $$F\big(f(z)\big)=f(z)g\big(f(z)\big)^{k-1}=f\cdot \big(g(f)\big)^{k-1}=f\big(\frac{1}{g}\big)^{k-1}=\frac{f}{g^{k-1}}.$$ Now apply $\overline{F}$ to get \[ f(z)=\overline{F}\big(\frac{f}{g^{k-1}}\big)=\frac{f}{g^{k-1}}\big(1-\frac{f}{g^{k-1}}\big)^{k-1}. \] This implies \begin{align*} & g^{k-1}=\big(1-\frac{f}{g^{k-1}}\big)^{k-1}\\ \Rightarrow & g=1-\frac{f}{g^{k-1}}\\ \Rightarrow & f=g^{k-1}-g^k\\ \Rightarrow & f=g^{k-1}(1-g).\\ \end{align*} But $1-g=-zg^k$ so $f=g^{k-1}(-zg^k)=-zg^{2k-1}$. \end{proof} The following important examples which are some special cases of this theorem go back at least to 1976 in a paper of Hoggatt and Bicknell in the {\it Fibonacci Quarterly} \cite{HB}. These occur again in Section~\ref{Bseq} as examples 1, 10, 18, and 20. Here the generating functions $C,\; T$ and $Q$ refer to the Catalan, ternary, and quaternary numbers respectively while $P=\frac{1}{1-z}$. \begin{table}[ht] \begin{center} \begin{tabular}{|l||l|l|l|} \hline $k$ & $g=1+zg^k$ & $f=-zg^{2k-1}$ & $(g,-zg^{2k-1})^2=I$\\ \hline \hline $k=1$ & $P=1+zP$ & $f=-zP$ & $(P,-zP)^2=I$\\ \hline $k=2$ & $C=1+zC^2$ & $f=-zC^3$ & $(C,-zC^3)^2=I$\\ \hline $k=3$ & $T=1+zT^3$ & $f=-zT^{5}$ & $(T,-zT^{5})^2=I$\\ \hline $k=4$ & $Q=1+zQ^4$ & $f=-zQ^7$ & $(Q,-zQ^7)^2=I$\\ \hline \end{tabular} \caption{Some special cases of Theorem~\ref{th:involution}} \label{T:involutionstab} \end{center} \end{table} Another interesting relationship among these examples will be presented in Section~\ref{Bseq} after presenting the notion of $B$-sequences. For $g(z)=1+\sum_{n\geq 1}g_nz^n$ and $f(z)=z+\sum_{n\geq 2}f_nz^n$, we know that if $\big(g(z),f(z)\big)$ is a pseudo-involution then $\big(g(z),-f(z)\big)$ is an involution so $f(-f(-z))=z$. Then we use \cite [Exercise 168, p.\ 134]{RS} to specify the even indexed coefficients ($f_2,f_4,\ldots$) arbitrarily which then determine the odd indexed coefficients ($f_3,f_5,\ldots$) uniquely. So there are many generating functions $f(z)$ which generate pseudo-involutions. It is easy to show that if $f(-f(-z))=z$, then $\big(f(z)/z,f(z)\big)$ is a pseudo-involution. Moreover it has been established \cite[Thm.\ 2.3]{CK} that if $\big(g(z),f(z)\big)$ is an involution, then $g(z)=\pm\exp (\Phi (z,zf(z)))$ for some antisymmetric function $\Phi$. However we do not know the answer of the following question. \begin{question} Given $f(z)$ such that $f(-f(-z))=z$ or $\overline{f}(z) = -f(-z)$, what are the possibilities for $g(z)$ so that $\big(g(z),f(z)\big)$ is an involution, particularly in combinatorial situations{\rm ?} \end{question} Another way to find more involutions and thus pseudo-involutions comes from basic group theory. If $\alpha$ and $\beta$ are two noncommuting involutions then $\langle\alpha, \beta\rangle$ is a dihedral group and $(\alpha \beta)^n\beta$ is an involution for all integers $n$, where $\alpha\beta$ plays the role of a rotation. In the Riordan group if $M_1$ and $M_2$ are noncommuting involutions then $\langle M_1,M_2\rangle$ is a dihedral group. \begin{proposition}\label{Prop} Let $D_1$ and $D_2$ be two pseudo-involutions. Then both $(D_1D_2^{-1})^nD_2$ and $D_1(D_1^{-1}D_2)^n$ are pseudo-involutions for all integers $n$. \end{proposition} \begin{proof} Let $H_1 = D_1M$ and $H_2 = D_2M$. Then $H_1$ and $H_2$ are involutions and so for all integer $n$, $(H_1 H_2)^nH_2$ is an involution and \begin{align*} (H_1 H_2)^nH_2 &= (D_1MD_2M)^nD_2M\\ &= (D_1D_2^{-1})^nD_2M. \end{align*} Hence $(D_1D_2^{-1})^nD_2$ is a pseudo-involution. On the other hand if we let $J_1 = MD_1$ and $J_2 = MD_2$, then \begin{align*} J_1 (J_1 J_2)^n &= MD_1(MD_1MD_2)^n\\ &= MD_1(D_1^{-1}D_2)^n. \end{align*} Since $J_1 (J_1 J_2)^n$ is an involution, $D_1(D_1^{-1}D_2)^n$ is also a pseudo-involution. \end{proof} The following result was first proved \cite{CJKS} using induction on $n$ but it follows more quickly from the proposition we just proved. \begin{corollary}\label{pi-nth} Let $D=\big(g(z),f(z)\big)$ be a pseudo involution. Then so is $D^n$, for all $n\in \mathbb{Z}$. \end{corollary} \begin{proof} Let $D_1 = D$ and $D_2 = (1,z)$. Then $D_1$ and $D_2$ are pseudo-involutions and thus Proposition \ref{Prop} applies. \end{proof} \section{Relationship with $B$-sequences}\label{Bseq} Let $A(z)$ be the generating function of the $A$ sequence of a Riordan array $\big(g(z),f(z)\big)$. We can write $f(z)$ in terms of $A$ as follows \begin{displaymath} f(z) = zA\big(f(z)\big). \end{displaymath} Replace $z$ by $\overline{f}(z)$ to get $z =\overline{f}(z)A(z)$. So $A(z) = \frac{z}{\overline{f}(z)}$. In case of pseudo-involutions, we have $\overline{f}(z)=-f(-z)$. Thus we also have \begin{lemma} Let $A(z)$ be the generating function of the $A$-sequence of the pseudo-involution Riordan array $\big(g(z),f(z)\big)$. Then \[ A(z) = \frac{-z}{f(-z)} = \frac{z}{-f(-z)}. \] \end{lemma} The following concept was discussed by Cheon et al.\ \cite{CJKS}. There the term ``$\Delta$-sequence" was used instead of $B$-sequence. \begin{definition} For a Riordan array $D = (d_{n,k})_{n,k\geq 0}$, a sequence $(b_0, b_1, b_2,\ldots)$ is said to be a {\it $B$-sequence} if and only if \[ d_{n+1,k} = d_{n,k-1} +\sum_{j\geq 0}b_j\cdot d_{n-j, k+j}. \] \end{definition} Note that $d_{n,k}=0$ for all $n