\documentclass[12pt,reqno]{article} \usepackage[usenames]{color} \usepackage{amssymb} \usepackage{graphicx} \usepackage{amscd} \usepackage[colorlinks=true, linkcolor=webgreen, filecolor=webbrown, citecolor=webgreen]{hyperref} \definecolor{webgreen}{rgb}{0,.5,0} \definecolor{webbrown}{rgb}{.6,0,0} \usepackage{color} \usepackage{fullpage} \usepackage{float} \usepackage{psfig} \usepackage{graphics,amsmath,amssymb} \usepackage{amsthm} \usepackage{amsfonts} \usepackage{latexsym} \usepackage{epsf} \setlength{\textwidth}{6.5in} \setlength{\oddsidemargin}{.1in} \setlength{\evensidemargin}{.1in} \setlength{\topmargin}{-.1in} \setlength{\textheight}{8.4in} \newcommand{\seqnum}[1]{\href{http://oeis.org/#1}{\underline{#1}}} \begin{document} \begin{center} \epsfxsize=4in \leavevmode\epsffile{logo129.eps} \end{center} \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{corollary}[theorem]{Corollary} \newtheorem{lemma}[theorem]{Lemma} \newtheorem{proposition}[theorem]{Proposition} \theoremstyle{definition} \newtheorem{definition}[theorem]{Definition} \newtheorem{example}[theorem]{Example} \newtheorem{conjecture}[theorem]{Conjecture} \theoremstyle{remark} \newtheorem{remark}[theorem]{Remark} \begin{center} \vskip 1cm{\LARGE\bf On the Sum of the Reciprocals of the \\ \vskip .05in Middle Prime Factors of an Integer} \vskip 1cm \large Vincent Ouellet\\ D\'{e}partement de math\'{e}matiques et de statistique\\ Universit\'{e} Laval\\ Qu\'{e}bec G1V 0A6\\ Canada\\ \href{mailto:vincent.ouellet.7@ulaval.ca}{\tt vincent.ouellet.7@ulaval.ca} \\ \end{center} \vskip .2 in \begin{abstract} We consider the arithmetical function $p^{\left(\beta\right)} (n) : = p_{\max\left(1,\left\lfloor \beta k\right\rfloor\right)}$ for a given fixed number $\beta\in\left(0,1\right)$, where $p_1 < p_2 < \cdots < p_k$ are the prime factors of $n$. We provide an estimate for the sum of the reciprocals of $p^{\left(\beta\right)} (n)$ for $n\leq x$, which improves and generalizes an earlier result of De Koninck and Luca. \end{abstract} \section{Introduction} Given an integer $n\geq 2$, let $P(n)$ denote its largest prime factor and let $P(1)=1$. At the end of the 1970's and early 1980's, many papers focused on estimating the global behavior of the sum of the reciprocals of $P(n)$ for $n\leq x$. For the highlights, see the papers of Erd\H{o}s and Ivi\'{c} \cite{MR681439} and~\cite{MR710969}. The best estimate was obtained in 1986 by Erd\H{o}s, Ivi\'{c}, and Pomerance~\cite[Thm.\ 1]{MR896810}, as they proved that \[ \sum\limits_{n\leq x}\frac{1}{P(n)} = x \int_2^x \rho\left(\frac{\log x}{\log t}\right)t^{-2}\mathrm{d}t\left(1+O\left( \sqrt{\frac{\log_2 x}{\log x}}\right)\right) \qquad \left(x\rightarrow \infty\right), \] where $\rho\left(u\right)$ is the Dickman function and $\log_k x$ denotes the $k$-th iterate of $\log$ evaluated at $x$. Here and in what follows, we shall assume that the input $x$ in such an expression is sufficiently large so that the iterated logarithms are real and positive. For any integer $k\geq 2$, letting $P_k (n)$ stand for the $k$-th largest prime factor with multiplicity of the integer $n$, De Koninck~\cite[Thm.\ 2]{MR1239141} proved that there exists a constant $c_k$ such that \[ \sum\limits_{\substack{n\leq x \\ \Omega(n)\geq k}} \frac{1}{P_k (n)} = c_k \frac{x\left(\log_2 x \right)^{k-2}}{\log x}\left(1+O\left( \frac{1}{\log_2 x}\right)\right) \qquad \left(x\rightarrow\infty\right), \] where $\Omega(n)$ stands for the number of prime factors of $n$ counting multiplicities. During the 1984 Oberwolfach Conference on Analytic Number Theory, Erd\H{o}s asked De Koninck if he had thought of estimating the sum of the reciprocals of the middle prime factors of the positive integers $n\leq x$. Given an integer $n\geq 2$, write it as $n= p_1^{a_1}p_2^{a_2}\cdots p_{k}^{a_k}$, where $p_110\log_2 x\right\};\\ \mathcal{N}_2 (x) &:= \left\{n \leq x : p_\beta (n) > \log x\right\};\\ \mathcal{N}_3 (x) &:= \left\{n\leq x : \omega(n) \in \left\{ 1, 2, \ldots, M\right\}\right\};\\ \mathcal{N}_4 (x) &:= \left\{n\leq x \right\}\setminus\left(\mathcal{N}_1 (x) \cup \mathcal{N}_2 (x) \cup \mathcal{N}_3(x)\right), \end{align*} where $M:= \left\lceil \max\left(\frac{2}{\beta}, \frac{2}{1-\beta}\right) \right\rceil$. We first show that \begin{equation} \label{preleq1} \sum\limits_{n\in \mathcal{N}_i (x)}\frac{1}{p^{\left(\beta\right)} (n)} \ll \frac{x \left(\log_2 x\right)^{M-1}}{\log x} \qquad \mbox{ for }i=1,2,3. \end{equation} By \cite[Lemma 13]{MR2337059}, it follows that \begin{equation} \label{N1} \sum\limits_{n\in\mathcal{N}_1 (x)} \frac{1}{p^{\left(\beta\right)} (n)} \ll \#\mathcal{N}_1 (x) = \sum\limits_{\substack{n\leq x \\ \Omega(n) >10\log_2 x}}1 \ll x\log x \ \frac{10\log_2 x} {2^{10\log_2 x}} \ll \frac{x}{\left(\log x\right)^5}. \end{equation} For the integers $n\in\mathcal{N}_2 (x)$, we have \begin{equation} \label{N2} \sum\limits_{n\in\mathcal{N}_2 (x)}\frac{1}{p^{\left(\beta\right)} (n)} \leq \sum\limits_{n\leq x} \frac{1}{\log x} \leq \frac{x} {\log x}. \end{equation} Finally, \begin{equation} \label{N3} \sum\limits_{n\in\mathcal{N}_3 (x)}\frac{1}{p^{\left(\beta\right)} (n)} \ll \#\mathcal{N}_3 (x) \ll \frac{x\left(\log_2 x\right)^{M-1}}{\log x}, \end{equation} by the Hardy-Ramanujan inequality (see Lemma~\ref{lemmahardyramanujan}). Hence, combining the bounds (\ref{N1}), (\ref{N2}) and (\ref{N3}), the upper bound (\ref{preleq1}) follows. For each integer $n\in\mathcal{N}_{p,k}(x)\cap \mathcal{N}_4 (x)$, we write $\omega(n) = k = \frac{1}{\beta}k_0 + \delta$, where $k_0 = \left\lfloor \beta k \right\rfloor$, so that $\delta\in\left[0, \frac{1}{\beta}\right)$ is fixed. Note that $k \in \left[M+1, 10\log_2 x\right]$ and that $p\in \left[2, \log x\right]$. Let us write $n=ap^\alpha b$, where $a\geq 2$, $P(a)p$, and $\omega(b) = \left(\frac{1}{\beta}-1\right)k_0 + \delta$, where $P(n)$ and $p(n)$ denote respectively the largest and the smallest prime factors of $n$. It follows from the bounds (\ref{N1}) and (\ref{N3}) that \begin{equation} \label{preleq3} \sum\limits_{n\in\mathcal{N}_4 (x)}\frac{1}{p^{\left(\beta\right)} (n)} = \sum\limits_{p\in\left[3,\log x\right]}\frac{1} {p}\sum\limits_{k\in\left[M+1, 10\log_2 x\right]} \#\left(\mathcal{N}_{p,k}(x) \cap \mathcal{N}_4 (x)\right) + O\left(\frac{x\left(\log_2 x\right)^{M-1}}{\log x }\right), \end{equation} where $p\geq 3$ comes from the fact that $a\geq 2$. Note that the $\beta$-positioned prime factors of some integers $n$ that are in the sets $\mathcal{N}_i(x)$ for $i=1, 2, 3$ are counted multiple times on the right-hand side of (\ref{preleq3}), but that their contribution is taken into consideration by the error term of equation (\ref{preleq3}). The objective is now to estimate the main term of equation (\ref{preleq3}). For this, three preliminary results will be useful. \begin{lemma}[Alladi~\cite{MR657120}, Theorem 6] \label{lemmaalladi} Given a positive integer $\lambda$, let \[ \omega_\lambda (x,y):= \# \left\{n\leq x : p(n)\geq y, \omega(n)=\lambda \right\} \] and \[ g\left(s,y,z\right):= \prod\limits_p \left(1+\frac{z} {p^s - 1}\right)\left(1-\frac{1}{p^s}\right)^z\prod\limits_{p0$, in the range $2 \leq y \leq \exp\left(\left(\log x\right)^{2/5}\right)$, $\Re(s) > \frac{1}{2}$ and $ \lambda \leq r \log_2 x$, we have \[ \omega_\lambda \left(x,y\right) = \frac{x}{\log x} \frac{g\left(1,y, \mu\right)}{\Gamma\left(1+\mu\right)} \frac{\left(\log_2 x\right)^{\lambda-1}}{ \left(\lambda-1\right)!} + O\left(\frac{x\left(\log_2 x\right)^{\lambda-1}\left(\log y \right)^{-\mu} \left(\log_2 y\right)^2 \lambda}{ \left(\lambda-1\right)! \log x \left(\log_2 x\right)^2} \right) \quad \left(x\rightarrow\infty\right), \] where $\mu := \frac{\lambda -1}{\log_2 x}$. \end{lemma} Lemma~\ref{lemmaalladi} and the following lemmas are used to estimate the sum over $b$ for the integers $n=ap^{\alpha}b$. \begin{lemma}[Hardy-Ramanujan inequality] \label{lemmahardyramanujan} For any integer $\lambda\geq 1$, define \[ \Pi_{\lambda} (x) = \#\left\{n\leq x : \omega(n) = \lambda\right\}. \] There exist positive constants $c$ and $x_0$ such that, uniformly for $1\leq \lambda \leq 10\log_2 x$, \[ \Pi_\lambda (x) \leq c\frac{x}{\log x} \frac{\left(\log_2 x\right)^{\lambda-1}} {\left(\lambda-1\right)!} \] for all $x>x_0$. \end{lemma} The next lemma follows from the proof of Theorem 1 in Erd\H{o}s and Tenenbaum~\cite{MR1014865}. It will be used to obtain an estimate for the sum over $a$ of the integers $n=ap^{\alpha}b \leq x$. \begin{lemma}[Erd\H{o}s and Tenenbaum] \label{lemmaerdostenenbaum} Let $\epsilon >0$. For every prime number $p\geq 5$, define the function $\rho=\rho\left(k_0 -1, p\right)$ as the unique solution to $ \sum\limits_{q0$};\\ 1, & \text{if $t=0$}; \end{cases} $$ and $$ F\left(z,p\right)=\prod\limits_{q1$ and define the function $f:\left(0,\infty\right) \rightarrow \left(0,\infty\right)$ by $ f(t) = \left(\frac{eB}{t}\right)^t $. The function $f$ is concave and reaches its maximum when $t=B$. \end{lemma} \begin{definition} For $x>-\frac{1}{e}$, we define the \textit{Lambert-W function} as the inverse of the real-valued function $h(y)=ye^y$, which is defined for $y>-1$, so that $ W(x) e^{W(x)}=x$. \end{definition} In particular, one can easily show that the Lambert-W function goes to $\infty$ as $x\rightarrow\infty$, that it is strictly increasing and that it goes to $0$ as $x\rightarrow 0$. Using these facts, the following lemmas can be proved. \begin{lemma} \label{eqlambert} As $x\rightarrow\infty$, \[ W(x) = \log x - \log_2 x + \frac{\log_2 x}{\log x} + O\left( \left(\frac{\log_2 x}{\log x}\right)^2\right). \] \end{lemma} \begin{lemma} \label{eqlambert2} As $x\rightarrow 0$, \[ W(x) = x + O\left(x^2\right). \] \end{lemma} The third function will be useful in the evaluation of some sums. \begin{lemma} \label{function2} Let $D>0$ and $C\in\mathbb{R}$, and define the function $g:\left(e^{C},\infty\right)\rightarrow \left(0, \infty\right)$ by\\ $ g(t) = \exp\left(\frac{D}{\beta}\left(\log t - C\right)^\beta- t\right)$. The function $g$ is concave and reaches its maximum when \[ \log t = \log t_0 := \left(1-\beta\right)W\left(\frac{D^{\frac{1} {1-\beta}}} {1-\beta}\exp\left(\frac{-C}{1-\beta}\right)\right) + C, \] where $W$ stands for the Lambert-W function. \end{lemma} \begin{proof} Clearly, \begin{align*} g^\prime (t) = 0 &\iff \frac{D}{t\left(\log t - C \right)^{1-\beta}} - 1 = 0 \iff D = t \left(\log t - C\right)^{1-\beta}\\ &\iff D^{\frac{1}{1-\beta}} = t^{\frac{1}{1-\beta}} \left(\log t - C\right) \iff D^{\frac{1}{1-\beta}} = \exp\left(\frac{\log t}{1-\beta}\right) \left(\log t - C\right)\\ &\iff \frac{D^{\frac{1}{1-\beta}}\exp\left(\frac{-C} {1-\beta}\right)}{1-\beta} = \exp\left(\frac{\log t - C}{1-\beta} \right)\left(\frac{\log t - C}{1-\beta}\right). \end{align*} Hence, by the definition of the Lambert-W function, it follows that this last equation is equivalent to $ \frac{\log t - C}{1-\beta}= W\left(\frac{D^{\frac{1}{1-\beta}}}{ 1-\beta}\exp\left(\frac{-C}{1-\beta}\right)\right) $. Since $t> e^{C}$, this equation always has a unique solution. \end{proof} \section{Estimation of the main term} We will now consider the primes $p$ belonging to the interval \begin{equation} \label{I} I := \left[\exp\left(\left(\frac{\log_2 x}{\left(\log_3 x \right)^{\frac{4}{1-\beta}}\log_4 x}\right)^{1-\beta}\right), \exp\left(\left(\log_2 x\right)^{1-\beta}\log_3 x\right)\right] \end{equation} and the positive integers $k$ belonging to the interval \begin{equation} \label{J} J := \left[ \frac{1}{4} \frac{\left(\log_2 x\right)^{1-\beta} \left(\log_3 x\right)^\beta}{\beta^{\beta}\left(1-\beta \right)^{1-3\beta}}, 2e \frac{\left(\log_2 x\right)^{1-\beta} \left(\log_3 x\right)^\beta}{\beta^{\beta}\left(1 -\beta\right)^{1-\beta}} \right]. \end{equation} We will show that the main contribution to the right-hand side of equation (\ref{preleq3}) comes from the primes $p\in I$ and integers $k\in J$. Note that $\# \mathcal{N}_{p,k}(x) \neq 0$ for any prime number $p\in I$ and integer $k \in J$. Let \begin{equation} \label{defsetA} \mathcal{A} = \mathcal{A}\left(k,p\right):=\left\{a\in\mathbb{N} : \omega(a)=k_0 -1, P(a)

p\right\}, \end{equation} so that $n=ap^\alpha b\in \mathcal{N}_4 (x)$ for $a\in\mathcal{A}$ and $b\in\mathcal{B}$. Hence, for $p\in I$ and $k\in J$, we have from the upper bound (\ref{N1}) that \begin{equation} \label{Npk0} \#\left(\mathcal{N}_{p,k}(x) \cap \mathcal{N}_4 (x)\right) = \sum\limits_{\substack{a\leq x\\ a \in \mathcal{A}}}\sum\limits_{\alpha = 1}^{\left\lfloor 10\log_2 x \right\rfloor} \sum\limits_{\substack{b\leq \frac{x}{ap^\alpha}\\b\in\mathcal{B}} }1 + O\left(\frac{x}{\left(\log x\right)^5}\right). \end{equation} Thus, it follows from equation (\ref{preleq3}) that \begin{equation} \label{sumN4} \sum\limits_{\substack{n\in \mathcal{N}_4 (x)\\ p^{\left(\beta\right)}(n) \in I\\ \omega(n) \in J}} \frac{1}{p^{\left(\beta\right)}(n)} = \sum\limits_{p\in I} \frac{1}{p} \sum\limits_{k\in J} \sum\limits_{\substack{a\leq x\\ a\in\mathcal{A}}} \sum\limits_{\alpha=1} ^{\left\lfloor 10 \log_2 x\right\rfloor} \sum\limits_{\substack{ b\leq \frac{x}{ap^{\alpha}}\\ b \in \mathcal{B}}} 1 + O\left(\frac{x \left(\log_2 x\right)^{M-1}}{\log x}\right). \end{equation} It remains to estimate the sums in the right-hand side of (\ref{sumN4}). Let \[ \#\mathcal{N}_{p,k}^{\prime}(x) := \sum\limits_{\substack{a\leq x\\ a\in\mathcal{A}}} \sum\limits_{\alpha=1}^{ \left\lfloor 10 \log_2 x\right\rfloor} \sum\limits_{\substack{ b\leq \frac{x}{ap^{\alpha}}\\ b \in \mathcal{B}}} 1. \] Since $ap^\alpha = x^{o(1)}$, we obtain from Lemma~\ref{lemmaalladi} that \[ \sum\limits_{\substack{b\leq\frac{x}{ap^\alpha}\\b\in\mathcal{B}} }1 = v_\lambda \left(\frac{x}{ap^\alpha},p+2\right) = \frac{x}{ap^\alpha \log x}\frac{\left(\log_2 x\right)^{ \lambda-1}}{\left(\lambda-1\right)!}\left(1+o(1)\right) \qquad \left(x\rightarrow\infty\right), \] where $\lambda = \left(\frac{1}{\beta}-1\right)k_0 + \delta \geq 2$, because $k\geq M+1$. Hence, as $x\rightarrow\infty$, \begin{equation} \label{Npk1} \#\mathcal{N}_{p,k}^{\prime}(x) \sim \frac{x}{p \log x} \frac{\left(\log_2 x\right)^{\lambda-1}}{\left(\lambda-1\right)!} \sum\limits_{\substack{a\leq x\\ a\in\mathcal{A}}}\frac{1}{a} \sum\limits_{\alpha=1}^{\left\lfloor 10\log_2 x \right\rfloor} \frac{1} {p^{\alpha-1}} \sim\frac{x}{p \log x} \frac{\left(\log_2 x\right)^{\lambda-1}}{\left(\lambda-1\right)!} \sum\limits_{a\in\mathcal{A}}\frac{1}{a}, \end{equation} because $a=x^{o(1)}$ for all $a\in \mathcal{A}$. Moreover, we have $ \sum\limits_{a\in\mathcal{A}}\frac{1}{a} \sim \sum\limits_{a\in \mathcal{G}} \frac{1}{a} $ as $x\rightarrow\infty$, where the set $\mathcal{G}$ is defined as in Lemma~\ref{lemmaerdostenenbaum}. Indeed, we have \[ \sum\limits_{a\in\mathcal{G}}\frac{1}{a}=\sum\limits_{a\in \mathcal{A}}\frac{1}{a} + \sum\limits_{\substack{a\in\mathcal{G} \\ \Omega(a)>10\log_2 x}}\frac{1}{a}, \] and Rankin's method (see, for example, \cite[Chap.~9]{MR3065334}) shows that $ \sum\limits_{\substack{n> x\\ P(n) < y}} \frac{1}{n} \ll e^{-u/2} \log y$ for any $x\geq y \geq 2$, where $u = \frac{\log x}{\log y}$. Hence, it follows that \[ \sum\limits_{\substack{a\in\mathcal{G}\\ \Omega(a)>10\log_2 x}}\frac{1}{a} \leq \sum\limits_{\substack{a>2^{10\log_2 x}\\ P(a)e^{e^e}$, so that \begin{align} \label{sumpI} \sum\limits_{p\in I}\frac{1}{p}g\left(\log p\right) &\geq g\left(t_0\right)\exp\left(-c_3\left(\log_3 x\right)^{2-\beta}\right) \sum\limits_{p\in \left[ \frac{p_0}{\log_2 x}, p_0 \log_2 x\right]} \frac{1}{p}\nonumber\\ &\gg g\left(t_0\right)\exp\left(-c_3\left(\log_3 x\right)^{2-\beta} \right) \left(\frac{\log_3 x}{\log_2 x}\right)^{1-\beta}\nonumber\\ &\geq g\left(t_0\right) \exp\left(\left(\log_3 x\right)^{2-\beta}\right). \end{align} Hence, from equation (\ref{sumNpkprime}), the upper bound (\ref{sumpbornesup}), and the lower bound (\ref{sumpI}), we have \begin{equation} \label{premresult} \sum\limits_{\substack{n\in \mathcal{N}_4 (x)\\ p^{\left(\beta\right)}(n) \in I\\ \omega(n) \in J}} \frac{1}{p^{\left(\beta\right)}(n)} = \frac{x}{\log x}g\left(t_0\right)\mathcal{R}. \end{equation} Estimates (\ref{preleq1}), (\ref{preleq3}), and (\ref{premresult}) allow us to write \begin{equation} \label{implicitresult} \sum\limits_{n\leq x}\frac{1}{p^{\left(\beta\right)}(n)} = \frac{x}{\log x}g\left(t_0\right)\mathcal{R} + E (x), \end{equation} where the error term $E(x)$ is defined by \[ E(x) = \sum\limits_{\substack{n\in\mathcal{N}_4 (x)\\ p^{\left(\beta\right)}(n) \not\in I \mbox{ \tiny{or} } \omega(n)\not\in J}}\frac{1} {p^{\left(\beta\right)} (n)}. \] In particular, an explicit evaluation of $g\left(t_0\right)$ using equation (\ref{estimt0}) yields the main term on the right-hand side of (\ref{result}). What is left to do is to obtain an upper bound for the error term. \section{Estimation of the error term} In this section, we show that the error term $E(x)$ satisfies $ E (x) = o\left(\frac{x}{\log x}g\left(t_0\right)\right)$ as $x \rightarrow\infty$. We can proceed as in the proof of the upper bound given by De Koninck and Luca~\cite{MR3065334}. First, we have from upper bound (\ref{preleq1}) and equation (\ref{preleq3}) that \begin{equation} \begin{array}{r@{}l} \label{E0eq1} \displaystyle\sum\limits_{n\leq x}\frac{1}{p^{\left(\beta\right)}(n)} &{=} \displaystyle\sum\limits_{n\in\mathcal{N}_4(x)} \frac{1} {p^{\left(\beta\right)}(n)} + O\left(\frac{x\left(\log_2 x\right)^{M-1}}{\log x}\right)\\ &{=} \displaystyle\sum\limits_{p\in\left[3, \log x\right]}\frac{1}{p} \sum\limits_{k\in \left[M+1, 10\log_2 x\right]} \#\left(\mathcal{N}_{p,k}(x)\cap \mathcal{N}_4 (x)\right) + O\left(\frac{x\left(\log_2 x\right)^{M-1}}{\log x}\right). \end{array} \end{equation} Moreover, by equation (\ref{Npk0}), we have \[ \#\left(\mathcal{N}_{p,k}(x)\cap \mathcal{N}_4 (x)\right) \leq \sum\limits_{\substack{a\leq x\\ a\in\mathcal{A}}}\sum\limits_{\alpha = 1}^{ \left\lfloor 10 \log_2 x\right\rfloor} \sum\limits_{\substack{b\leq \frac{x}{ap^{\alpha}}\\ b \in \mathcal{B}}} 1. \] Hence, we get from Lemma~\ref{lemmahardyramanujan} that \begin{equation} \label{boundnpkn4} \#\left(\mathcal{N}_{p,k}(x)\cap \mathcal{N}_4 (x)\right) \ll \frac{x}{\log x}\frac{\left(\log_2 x\right)^{\lambda -1}}{\left(\lambda -1\right)!}\sum\limits_{\substack{a\leq x\\ a\in\mathcal{A}}} \frac{1}{a} \sum\limits_{\alpha = 1}^{\left\lfloor 10 \log_2 x\right\rfloor} \frac{1}{p^{\alpha}} \ll \frac{x}{p \log x}\frac{\left(\log_2 x\right)^{\lambda -1}}{\left(\lambda -1 \right)!} \sum\limits_{a\in\mathcal{A}}\frac{1}{a}. \end{equation} In light of the definition of the set $\mathcal{G}$, upper bound (\ref{boundnpkn4}) yields \begin{equation} \label{boundnpkn4eq2} \#\left(\mathcal{N}_{p,k}(x)\cap \mathcal{N}_4 (x)\right) \ll\frac{x}{p \log x}\frac{\left(\log_2 x\right)^{\lambda -1}} {\left(\lambda -1 \right)!} \sum\limits_{a\in\mathcal{G}}\frac{1}{a}. \end{equation} On the other hand, observe that $\sum\limits_{a\in G}\frac{1}{a} = 0$ if $p