\documentclass[12pt,reqno]{article} \usepackage[usenames]{color} \usepackage{amssymb} \usepackage{graphicx} \usepackage{amscd} \usepackage[colorlinks=true, linkcolor=webgreen, filecolor=webbrown, citecolor=webgreen]{hyperref} \definecolor{webgreen}{rgb}{0,.5,0} \definecolor{webbrown}{rgb}{.6,0,0} \usepackage{color} \usepackage{fullpage} \usepackage{float} \usepackage{psfig} \usepackage{graphics,amsmath,amssymb} \usepackage{amsthm} \usepackage{amsfonts} \usepackage{latexsym} \usepackage{epsf} \setlength{\textwidth}{6.5in} \setlength{\oddsidemargin}{.1in} \setlength{\evensidemargin}{.1in} \setlength{\topmargin}{-.1in} \setlength{\textheight}{8.4in} \newcommand{\seqnum}[1]{\href{http://oeis.org/#1}{\underline{#1}}} \newcommand{\lb}{\left} \newcommand{\rb}{\right} \DeclareMathOperator{\PD}{PD} \DeclareMathOperator{\PDO}{PDO} \begin{document} \begin{center} \epsfxsize=4in \leavevmode\epsffile{logo129.eps} \end{center} \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{corollary}[theorem]{Corollary} \newtheorem{lemma}[theorem]{Lemma} \newtheorem{proposition}[theorem]{Proposition} \theoremstyle{definition} \newtheorem{definition}[theorem]{Definition} \newtheorem{example}[theorem]{Example} \newtheorem{conjecture}[theorem]{Conjecture} \theoremstyle{remark} \newtheorem{remark}[theorem]{Remark} \begin{center} \vskip 1cm{\Large\bf Congruences Modulo Small Powers of 2 and 3 for \\ \vskip .1in Partitions into Odd Designated Summands } \vskip 1cm \large B. Hemanthkumar\\ Department of Mathematics\\ M. S. Ramaiah University of Applied Sciences\\ Bengaluru-560 058\\ India\\ \href{mailto:hemanthkumarb.30@gmail.com}{\tt hemanthkumarb.30@gmail.com}\\ \ \\ H. S. Sumanth Bharadwaj and M. S. Mahadeva Naika\footnote{Corresponding author.}\\ Department of Mathematics\\ Central College Campus\\ Bangalore University\\ Bengaluru-560 001\\ India\\ \href{mailto:sumanthbharadwaj@gmail.com}{\tt sumanthbharadwaj@gmail.com}\\ \href{mailto:msmnaika@rediffmail.com}{\tt msmnaika@rediffmail.com} \end{center} \vskip .2 in \begin{abstract} Andrews, Lewis and Lovejoy introduced a new class of partitions, partitions with designated summands. Let $\PD(n)$ denote the number of partitions of $n$ with designated summands and $\PDO(n)$ denote the number of partitions of $n$ with designated summands in which all parts are odd. Andrews et al.\ established many congruences modulo 3 for $\PDO(n)$ by using the theory of modular forms. Baruah and Ojah obtained numerous congruences modulo 3, 4, 8 and 16 for $\PDO(n)$ by using theta function identities. In this paper, we prove several infinite families of congruences modulo 9, 16 and 32 for $\PDO(n)$. \end{abstract} \section{Introduction}\label{S1} A \textit{partition} of a positive integer $n$ is a non increasing sequence of positive integers $\lambda_1, \lambda_2,\ldots, \lambda_m$ such that $n=\lambda_1+\lambda_2+\cdots+\lambda_m$, where the $\lambda_i$'s $(i=1,2,\ldots,m)$ are called parts of the partition. For example, the partitions of $4$ are \begin{equation*} 4,\quad 3+1,\quad 2+2,\quad 2+1+1,\quad 1+1+1+1. \end{equation*} Let $p(n)$ denote the number of partitions of $n$. Thus $p(4)=5$. Andrews, Lewis and Lovejoy \cite{A} studied \textit{partitions with designated summands}, which are constructed by taking ordinary partitions and tagging exactly one of each part size. Thus the partitions of $4$ with designated summands are given by \begin{align*} &\quad \quad 4',\quad 3'+1',\quad 2'+2,\quad 2+2',\quad 2'+1'+1,\quad 2'+1+1',\\ & 1'+1+1+1,\quad 1+1'+1+1,\quad 1+1+1'+1,\quad 1+1+1+1'. \end{align*} Let $\PD(n)$ denote the number of partitions of $n$ with designated summands and $\PDO(n)$ denote the number of partitions of $n$ with designated summands in which all parts are odd. Thus $\PD(4)=10$ and $\PDO(4)=5$. Recently, Chen et al.\ \cite{CJS} obtained the generating functions for $\PD(3n)$, $\PD(3n+1)$ and $\PD(3n+2)$ and gave a combinatorial interpretation of the congruence $\PD(3n+ 2) \equiv 0$ (mod $3)$. Xia \cite{X} proved infinite families of congruences modulo $9$ and $27$ for $\PD(n)$. For example, for all $n\geq 0$ and $k \geq 1$ \begin{equation*} \PD(2^{18k-1}(12n + 1)) \equiv 0 \pmod{27}. \end{equation*} Throughout this paper, we use the notation \begin{equation*} f_k:=(q^k;q^k)_{\infty}\ \ (k=1,2,3,\ldots),\ \text{where}\ \ (a;q)_{\infty} := \prod_{m=0}^{\infty}(1-aq^{m}). \end{equation*} The generating function for $\PDO(n)$ satisfies \begin{equation} \sum_{n=0}^{\infty} \PDO(n) q^n = \frac{f_4f_6^2}{f_1f_3f_{12}}. \label{E1} \end{equation} Using the theory of $q$-series and modular forms Andrews et al.\ \cite{A} derived \begin{align} \sum_{n=0}^{\infty} \PDO(3n) q^n &= \frac{f_2^2f_6^4}{f_1^4f_{12}^2}, \label{E2}\\ \sum_{n=0}^{\infty} \PDO(3n+1) q^n &= \frac{f_2^4f_3^3f_{12}}{f_1^5f_4f_6^2}, \label{E3} \end{align} and \begin{equation} \sum_{n=0}^{\infty} \PDO(3n+2) q^n = 2 \frac{f_2^3f_6f_{12}}{f_1^4f_4}. \label{E4} \end{equation} They also established, for all $n \geq 0$ \begin{equation*} \PDO(9n+6) \equiv 0 \pmod{3} \end{equation*}and \begin{equation*} \PDO(12n+6) \equiv 0 \pmod{3}. \end{equation*} Baruah and Ojah \cite{BO} proved several congruences modulo 3, 4, 8 and 16 for $\PDO(n)$. For instance, \begin{equation*} \PDO(8n+7) \equiv 0 \pmod{8} \end{equation*} and \begin{equation*} \PDO(12n+9) \equiv 0 \pmod{16}. \end{equation*} The aim of this paper is to prove several new infinite families of congruences modulo $9$, $16$ and $32$ for $\PDO(n)$. In particular, we prove the following \begin{theorem}\label{T0} For all nonnegative integers $\alpha, \beta$ and $n$, we have \begin{equation} \PDO(2^{\alpha+2}3^{\beta}(72n+66)) \equiv 0 \pmod{144} \label{E543} \end{equation} and \begin{equation} \PDO(2^{\alpha+2}3^{\beta}(144n+138)) \equiv 0 \pmod{288}. \label{E544} \end{equation} \end{theorem} In Section \ref{S2}, we list some preliminary results. We prove several infinite families of congruences modulo $9$ for $\PDO(n)$ in Section \ref{S3}, and Theorem \ref{T0} and many infinite families of congruences modulo $16$ and $32$ for $\PDO(n)$ in Section \ref{S4}. \section{Definitions and preliminaries}\label{S2} We will make use of the following definitions, notation and results. Let $f(a, b)$ be Ramanujan's general theta function \cite[p.\ 34]{B} given by \begin{equation*} f(a, b):= \sum_{n=-\infty}^\infty a^{\frac{n(n+1)}{2}} b^{\frac{n(n-1)}{2}}. \end{equation*} Jacobi's triple product identity can be stated in Ramanujan's notation as follows: \begin{equation*} f(a, b) = (-a; ab)_\infty (-b; ab)_\infty (ab; ab)_\infty. \end{equation*} In particular, \begin{equation} \label{E1021} \varphi(q):= f(q, q)=\sum_{k=-\infty}^{\infty} q^{k^2} =\frac{f_2^5}{f_1^2f_4^2}, \qquad \varphi(-q):= f(-q, -q)= \frac{f_1^2}{f_2}, \end{equation} \begin{equation}\label{E1022} \psi(q):= f(q, q^3) = \sum\limits_{k=0}^{\infty}q^{k(k+1)/2} = \frac{f_2^2}{f_1} \end{equation} and \begin{equation}\label{E102} f(-q):= f(-q, -q^2) = \sum\limits_{k=-\infty}^{\infty}(-1)^k q^{k(3k-1)/2} = f_1. \end{equation} For any positive integer $k$, let $k(k+1)/2$ be the $k^{th}$ \textit{triangular number} and $k(3k\pm 1)/2$ be a generalized \textit{pentagonal number}. \begin{lemma}\label{L1} The following 2-dissections hold: \begin{align} f_1^2 &= \frac{f_2f_8^5}{f_4^2f_{16}^2} - 2q \frac{f_2f_{16}^2}{f_8},\label{L11}\\ \frac{1}{f_1^2} &= \frac{f_8^5}{f_2^5f_{16}^2} + 2q \frac{f_4^2f_{16}^2}{f_2^5f_8},\label{L12}\\ f_1^4 &= \frac{f_4^{10}}{f_2^2f_8^4} - 4q \frac{f_2^2f_8^4}{f_4^2}\label{L13} \end{align} and \begin{equation} \frac{1}{f_1^4} = \frac{f_4^{14}}{f_2^{14}f_8^4} + 4q \frac{f_4^2f_8^4}{f_2^{10}}.\label{L14} \end{equation} \end{lemma} \begin{proof} Lemma \ref{L1} is an immediate consequence of dissection formulas of Ramanujan, collected in Berndt's book \cite[Entry 25, p.\ 40]{B}. \end{proof} \begin{lemma}\label{L2} The following 2-dissections hold: \begin{align} \frac{f_1^3}{f_3} &= \frac{f_4^3}{f_{12}} - 3q \frac{f_2^2f_{12}^3}{f_4f_6^2},\label{L22}\\ \frac{f_3^3}{f_1} &= \frac{f_4^3f_6^2}{f_2^2f_{12}} + q \frac{f_{12}^3}{f_4},\label{L23}\\ \frac{f_3}{f_1^3} &= \frac{f_4^6f_6^3}{f_2^9f_{12}^2} + 3q \frac{f_4^2f_6f_{12}^2}{f_2^7} \label{L21} \end{align} and \begin{equation} \frac{f_1}{f_3^3} = \frac{f_2f_4^2f_{12}^2}{f_6^7} - q \frac{f_2^3f_{12}^6}{f_4^2f_6^9}.\label{L24} \end{equation} \end{lemma} \begin{proof} Hirschhorn et al.\ \cite{HGB} established \eqref{L22} and \eqref{L23}. Replacing $q$ by $-q$ in \eqref{L22} and \eqref{L23}, and using the relation \begin{equation*} (-q;-q)_{\infty} = \frac{f_2^3}{f_1f_4}, \end{equation*} we obtain \eqref{L21} and \eqref{L24}. \end{proof} \begin{lemma}\label{L4} The following 2-dissections hold: \begin{align} f_1f_3 &= \frac{f_2f_8^2f_{12}^4}{f_4^2f_6f_{24}^2} - q \frac{f_4^4f_6f_{24}^2}{f_2f_8^2f_{12}^2},\label{L34}\\ \frac{1}{f_1f_3} &= \frac{f_8^2f_{12}^5}{f_2^2f_4f_6^4f_{24}^2} + q \frac{f_4^5f_{24}^2}{f_2^4f_6^2f_8^2f_{12}}\label{L33} \end{align} and \begin{equation} \frac{f_3^2}{f_1^2} = \frac{f_4^4f_6f_{12}^2}{f_2^5f_8f_{24}} + 2q \frac{f_4f_6^2f_8f_{24}}{f_2^4f_{12}}.\label{L31} \end{equation} \end{lemma} \begin{proof} Baruah and Ojah \cite{BO1} derived the above identities. \end{proof} \begin{lemma}\label{L6} The following 3-dissections hold: \begin{equation} \varphi(-q) = \varphi(-q^9) - 2q f(-q^3,-q^{15})\label{L42} \end{equation} and \begin{equation} \psi(q) = f(q^3,q^6) + q \psi(q^9). \label{L41} \end{equation} \end{lemma} \begin{proof} See Berndt's book \cite[p.\ 49]{B} for a proof of \eqref{L42} and \eqref{L41}. \end{proof} \begin{lemma}\label{L7} The following 3-dissection holds: \begin{align} f_1f_2 = \frac{f_6f_9^4}{f_3f_{18}^2} - q f_9f_{18} - 2q^2 \frac{f_3f_{18}^4}{f_6f_9^2}. \label{L51} \end{align} \end{lemma} \begin{proof} Hirschhorn and Sellers \cite{HS} have proved the above identity. \end{proof} Let $t$ be a positive integer. A partition of $n$ is called a $t$-\textit{core} partition of $n$ if none of the hook numbers of its associated Ferrers-Young diagram are multiples of $t$. Let $a_t(n)$ denote the number of $t$-\textit{core} partitions of $n$. Then the generating function of $a_t(n)$ satisfies \begin{equation}\label{E5} \sum\limits_{n=0}^{\infty} a_t(n) q^n = \frac{f_t^t}{f_1}. \end{equation} Many mathematicians have studied arithmetic properties of $a_3(n)$. See for example, Keith \cite{K}, and Lin and Wang \cite{LW}. Hirschhorn and Sellers \cite{HS1} obtained an explicit formula for $a_3(n)$ by using elementary methods and proved \begin{lemma}\label{L01} Let $3n+1=\prod\limits_{i=1}^{k} p_i^{\alpha_i}\prod\limits_{j=1}^{m} q_j^{\beta_j}$, where $p_i\equiv 1 \pmod{3}$ and $q_j\equiv 2 \pmod{3}$ with $\alpha_i, \beta_j\geq 0$ be the prime factorization of $3n+1$. Then \begin{equation*}\label{E6} a_3(n) = \begin{cases} \prod\limits_{i=1}^{k}(\alpha_i+1), & \text{if all } \beta_j \text{are even;}\\ 0, & \text{otherwise}. \end{cases} \end{equation*} \end{lemma} \section{Congruences modulo 9}\label{S3} In this section, we prove the following infinite families of congruences modulo 9 for $\PDO(n)$. \begin{theorem} \label{T1} For all nonnegative integers $\alpha, \beta$ and $n$, we have \begin{align} \PDO(4^{\alpha}(24n+16)) &\equiv \PDO(24n+16) \pmod{9} \label{E401},\\ \PDO(2^{\alpha}3^{\beta}(24n+24)) & \equiv (-1)^{\alpha}\PDO(24n+24) \pmod{9} \label{E402},\\ \PDO(4^{\alpha}(48n+40)) & \equiv 0 \pmod{9} \label{E428} \end{align} and \begin{equation} \PDO(2^{\alpha}3^{\beta}(144n+120)) \equiv 0 \pmod{9}. \label{E429} \end{equation} \end{theorem} \begin{theorem}\label{T3} For any nonnegative integer $n$, let $3n+1=\prod\limits_{i=1}^{k} p_i^{\alpha_i}\prod\limits_{j=1}^{m} q_j^{\beta_j}$, where $p_i\equiv 1 \pmod{3}$ and $q_j\equiv 2 \pmod{3}$ are primes with $\alpha_i, \beta_j\geq 0$. Then, \begin{equation}\label{E301} \PDO(48n+16) \equiv \begin{cases} 6\prod\limits_{i=1}^{k} (\alpha_i+1) \pmod{9}, & \text{if all } \beta_j \text{ are even;}\\ 0 \pmod{9}, & \text{otherwise}. \end{cases} \end{equation} and \begin{equation}\label{E302} \PDO(72n+24) \equiv \begin{cases} 3\prod\limits_{i=1}^{k} (\alpha_i+1) \pmod{9}, & \text{if all } \beta_j \text{ are even;}\\ 0 \pmod{9}, & \text{otherwise}. \end{cases} \end{equation} \end{theorem} \begin{corollary}\label{C31} Let $p\equiv 2 \pmod{3}$ be a prime. Then for all nonnegative integers $\alpha$ and $n$ with $p \nmid n$, we have \begin{equation}\label{E303} \PDO(48p^{2\alpha+1}n+16p^{2\alpha+2}) \equiv 0 \pmod{9} \end{equation} and \begin{equation}\label{E304} \PDO(72p^{2\alpha+1}n+24p^{2\alpha+2}) \equiv 0 \pmod{9}. \end{equation} \end{corollary} \begin{theorem}\label{T34} If $n$ cannot be represented as the sum of a triangular number and three times a triangular number, then \begin{equation*} \PDO(48n+24) \equiv 0 \pmod{9}. \end{equation*} \end{theorem} \begin{corollary}\label{C34} For any positive integer $k$, let $p_j\geq 5,\ 1\leq j\leq k$ be primes. If $(-3/p_j)=-1$ for every $j$, then for all nonnegative integers $n$ with $p_k\nmid n$ we have \begin{equation} \PDO(48 p_1^2p_2^2\cdots p_{k-1}^2p_kn+ 24 p_1^2p_2^2\cdots p_k^2) \equiv 0 \pmod{9}. \label{C341} \end{equation} \end{corollary} By the binomial theorem, it is easy to see that for any positive integer $m$, \begin{equation} f_m^3 \equiv f_{3m} \pmod{3} \label{E403} \end{equation} and \begin{equation} f_m^9 \equiv f_{3m}^3 \pmod{9}.\label{E404} \end{equation} \begin{proof} [Proof of Theorem \ref{T1}] From \eqref{E404}, it follows that \begin{equation} \frac{f_3^3}{f_1^5} \equiv f_1^4 \pmod{9}.\label{E405} \end{equation} In view of \eqref{E405}, we rewrite \eqref{E3} as \begin{equation} \sum_{n=0}^{\infty} \PDO(3n+1) q^n \equiv \frac{f_1^4f_2^4f_{12}}{f_4f_6^2} \pmod{9}. \label{E406} \end{equation} Substituting \eqref{L13} in \eqref{E406} and extracting the terms containing odd powers of $q$, we get \begin{equation} \sum_{n=0}^{\infty} \PDO(6n+4) q^n \equiv -4 \frac{f_1^6f_4^4f_6}{f_2^3f_3^2} \pmod{9}. \label{E408} \end{equation} Employing \eqref{L22} in \eqref{E408} and extracting the terms containing even powers of $q$, we derive \begin{align} \sum_{n=0}^{\infty} \PDO(12n+4) q^n \equiv -4 \frac{f_2^{10}f_3}{f_1^3f_6^2} \pmod{9}. \label{E409} \end{align} Substituting \eqref{L21} in \eqref{E409} and extracting the terms containing odd powers of $q$, we get \begin{equation*} \sum_{n=0}^{\infty} \PDO(24n+16) q^n \equiv -12 \frac{f_1^3f_2^2f_6^2}{f_3} \pmod{9}. \end{equation*} From \eqref{E403}, \begin{equation*} \frac{f_1^3f_2^2f_6^2}{f_3} \equiv \frac{f_6^3}{f_2} \pmod{3}. \end{equation*} In view of the above two identities, \begin{equation} \sum_{n=0}^{\infty} \PDO(24n+16) q^n \equiv 6 \frac{f_6^3}{f_2} \pmod{9},\label{E410} \end{equation} which implies that \begin{equation} \PDO(48n+40) \equiv 0 \pmod{9} \label{E412} \end{equation} for all $n \geq 0$ and \begin{equation} \sum_{n=0}^{\infty} \PDO(48n+16) q^n \equiv 6 \frac{f_3^3}{f_1} \pmod{9}. \label{E411} \end{equation} Invoking \eqref{L23} in \eqref{E411} and extracting the terms containing odd powers of $q$, \begin{equation} \sum_{n=0}^{\infty} \PDO(96n+64) q^n \equiv 6 \frac{f_6^3}{f_2} \pmod{9}.\label{E413} \end{equation} By \eqref{E410} and \eqref{E413}, \begin{equation} \PDO(96n+64) \equiv \PDO(24n+16) \pmod{9}. \label{E414} \end{equation} Congruence \eqref{E401} follows from \eqref{E414} and mathematical induction. Congruence \eqref{E428} follows from \eqref{E412} and \eqref{E401}. Employing \eqref{L14} in \eqref{E2}, \begin{equation*} \sum_{n=0}^{\infty} \PDO(3n) q^n = \frac{f_4^{14}f_6^4}{f_2^{12}f_8^4f_{12}^2} + 4q \frac{f_4^2f_6^4f_8^4}{f_2^8f_{12}^2}, \end{equation*} which yields \begin{equation} \sum_{n=0}^{\infty} \PDO(6n) q^n = \frac{f_2^{14}f_3^4}{f_1^{12}f_4^4f_6^2}\label{E415} \end{equation} and \begin{equation} \sum_{n=0}^{\infty} \PDO(6n+3) q^n = 4 \frac{f_2^2f_3^4f_4^4}{f_1^8f_6^2}.\label{E416} \end{equation} Applying \eqref{L21} and \eqref{E415}, \begin{equation*} \sum_{n=0}^{\infty} \PDO(6n) q^n = \frac{f_2^{14}}{f_4^4f_6^2}\lb( \frac{f_4^6f_6^3}{f_2^9f_{12}^2} + 3q \frac{f_4^2f_6f_{12}^2}{f_2^7}\rb)^4, \end{equation*} which implies that \begin{equation*} \sum_{n=0}^{\infty} \PDO(12n) q^n \equiv \frac{f_2^{20}f_3^{10}}{f_1^{22}f_6^8} \pmod{9}. \end{equation*} From \eqref{E404}, \begin{equation*} \frac{f_2^{20}f_3^{10}}{f_1^{22}f_6^8} \equiv \frac{f_2^2f_3^4}{f_1^4f_6^2} \pmod{9}. \end{equation*} In view of the above two identities, \begin{equation} \sum_{n=0}^{\infty} \PDO(12n) q^n \equiv \frac{f_2^2f_3^4}{f_1^4f_6^2} \pmod{9}. \label{E418} \end{equation} Substituting \eqref{L23} and \eqref{L21} in \eqref{E418}, and extracting the terms containing even powers of $q$, we have \begin{equation} \sum_{n=0}^{\infty} \PDO(24n) q^n \equiv \frac{f_2^9f_3^3}{f_1^9f_6^3}+ 3q \frac{f_2f_6^5}{f_1^5f_3} \pmod{9}. \label{E553} \end{equation} Using \eqref{E403} and \eqref{E404} in \eqref{E553}, we get \begin{equation} \sum_{n=0}^{\infty} \PDO(24n+24) q^n \equiv 3 \frac{f_1f_2f_6^5}{f_3^3} \pmod{9}. \label{E419} \end{equation} Substituting \eqref{L24} in \eqref{E419} and using \eqref{E403}, we have \begin{align*} \sum\limits_{n=0}^{\infty} \PDO(24n+24) q^n &\equiv 3 \frac{f_2^2f_4^2f_{12}^2}{f_6^2} - 3q \frac{f_2^4f_{12}^6}{f_4^2f_6^4}\\ & \equiv 3 \frac{f_4^2f_{12}^2}{f_2f_6} - 3q \frac{f_2f_4f_{12}^5}{f_6^3} \pmod{9}, \end{align*} which yields \begin{equation} \sum_{n=0}^{\infty} \PDO(48n+24) q^n \equiv 3 \psi(q) \psi(q^3) \pmod{9} \label{E420} \end{equation} and \begin{equation} \sum_{n=0}^{\infty} \PDO(48n+48) q^n \equiv -3 \frac{f_1f_2f_6^5}{f_3^3} \pmod{9}. \label{E421} \end{equation} By \eqref{E419} and \eqref{E421}, \begin{equation} \PDO(2(24n+24)) \equiv -\PDO(24n+24) \pmod{9}. \label{E422} \end{equation} Employing \eqref{L51} in \eqref{E419} and using \eqref{E403}, \begin{align*} \sum\limits_{n=0}^{\infty} \PDO(24n+24) q^n & \equiv 3 \frac{f_6^6f_9^4}{f_3^4f_{18}^2} - 3q \frac{f_6^5f_9f_{18}}{f_3^3} - 6q^2 \frac{f_6^4f_{18}^4}{f_3^2f_9^2}\\ & \equiv 3 \frac{f_9^3}{f_3} + 6q \frac{f_{18}^3}{f_6} + 3q^2 \frac{f_3f_6f_{18}^5}{f_9^3} \pmod{9} \end{align*} which implies that \begin{equation} \sum_{n=0}^{\infty} \PDO(72n+24) q^n \equiv 3 \frac{f_3^3}{f_1} \pmod{9}, \label{E423} \end{equation} \begin{equation} \sum_{n=0}^{\infty} \PDO(72n+48) q^n \equiv 6 \frac{f_6^3}{f_2} \pmod{9} \label{E424} \end{equation} and \begin{equation} \sum_{n=0}^{\infty} \PDO(72n+72) q^n \equiv 3 \frac{f_1f_2f_6^5}{f_3^3} \pmod{9}. \label{E425} \end{equation} From \eqref{E424}, \begin{equation} \PDO(144n+120) \equiv 0 \pmod{9}. \label{E426} \end{equation} By \eqref{E419} and \eqref{E425}, \begin{equation} \PDO(3(24n+24)) \equiv \PDO(24n+24) \pmod{9}. \label{E427} \end{equation} Congruence \eqref{E402} follows from \eqref{E422}, \eqref{E427}, and mathematical induction. Congruence \eqref{E429} follows from \eqref{E426} and \eqref{E402}. \end{proof} \begin{proof}[Proof of Theorem \ref{T3}] From \eqref{E5}, \eqref{E411} and \eqref{E423}, it is clear that for all $n\geq 0$ \begin{equation}\label{E559} \PDO(48n+16) \equiv 6 a_3(n) \pmod{9}, \end{equation} and \begin{equation}\label{E560} \PDO(72n+24) \equiv 3 a_3(n) \pmod{9}. \end{equation} Congruence \eqref{E301} follows from Lemma \ref{L01} and \eqref{E559}. Congruence \eqref{E302} follows from Lemma \ref{L01} and \eqref{E560}. \end{proof} For any prime $p$ and any positive integer $N$, let $\upsilon_p(N)$ denote the exponent of the highest power of $p$ dividing $N$. \begin{proof}[Proof of Corollary \ref{C31}] Suppose $\alpha\geq 0,\ p\equiv 2$ (mod $3)$ and $p \nmid n$, then it is clear that \begin{equation}\label{E573} \upsilon_p\lb(3\lb(p^{2\alpha+1}n+\frac{p^{2\alpha+2}-1}{3}\rb)+1\rb) = \upsilon_p\lb(3p^{2\alpha+1}n+p^{2\alpha+2}\rb) = 2\alpha+1. \end{equation} Congruences \eqref{E303} and \eqref{E304} follow from \eqref{E301}, \eqref{E302} and \eqref{E573}. \end{proof} \begin{proof}[Proof of Theorem \ref{T34}] From \eqref{E1022} and \eqref{E420}, we have \begin{equation}\label{E561} \sum\limits_{n=0}^{\infty} \PDO(48n+24) q^n \equiv 3 \sum\limits_{k=0}^{\infty}\sum\limits_{m=0}^{\infty} q^{k(k+1)/2+3m(m+1)/2} \pmod{9}. \end{equation} Theorem \ref{T34} follows from \eqref{E561}. \end{proof} \begin{proof}[Proof of Corollary \ref{C34}] By \eqref{E561}, \begin{equation*} \sum\limits_{n=0}^{\infty} \PDO(48n+24) q^{48n+24} \equiv 3 \sum_{k=0}^{\infty} \sum_{m=0}^{\infty} q^{6(2k+1)^2+2(6m+3)^2} \pmod{9}, \label{E} \end{equation*} which implies that if $48n+24$ is not of the form $6(2k+1)^2+2(6m+3)^2$, then $\PDO(48n+24)\equiv 0$ (mod $9)$. Let $k\geq 1$ be an integer and let $p_i \geq 5,\ 1\leq i \leq k$ be primes with $(\frac{-3}{p_i})=-1$. If $N$ is of the form $2x^2+6y^2$, then $v_{p_i}(N)$ is even since $(\frac{-3}{p_i})=-1$. Let \begin{align*} N & = 48\lb(p_1^2p_2^2\cdots p_{k-1}^2p_kn+\frac{p_1^2p_2^2\cdots p_{k-1}^2p_k^2-1}{2}\rb) + 24\\ & =48p_1^2p_2^2\cdots p_{k-1}^2p_kn+24p_1^2p_2^2\cdots p_{k-1}^2p_k^2. \end{align*} If $p_{k}\nmid n$, then $v_{p_k}(N)$ is an odd number and hence $N$ is not of the form $2x^2+6y^2$. Therefore \eqref{C341} holds. \end{proof} \section{Congruences modulo $2^4$ and $2^5$}\label{S4} In this section, we establish the following infinite families of congruences modulo 16 and 32 for $\PDO(n)$. \begin{theorem}\label{T4} For all nonnegative integers $\alpha$ and $n$, we have \begin{align} \PDO(4^{\alpha}(12n+8)) &\equiv \PDO(12n+8) \pmod{2^4}, \label{E434}\\ \PDO(4^{\alpha}(24n+23)) &\equiv 0 \pmod{2^4}, \label{E435}\\ \PDO(4^{\alpha}(48n+14)) &\equiv 0 \pmod{2^4} \label{E436} \end{align} and \begin{equation} \PDO(24n+17) \equiv 0 \pmod{2^4}. \label{E437} \end{equation} \end{theorem} \begin{theorem}\label{T5} For all nonnegative integers $\alpha$ and $n$, we have \begin{align} \PDO(2^{\alpha}(12n)) &\equiv \PDO(12n) \pmod{2^4}, \label{E464}\\ \PDO(2^{\alpha}(72n+42)) &\equiv 0 \pmod{2^4} \label{E467} \end{align} and \begin{equation} \PDO(2^{\alpha}(72n+66)) \equiv 0 \pmod{2^4}. \label{E468} \end{equation} \end{theorem} \begin{theorem}\label{T7} For all nonnegative integers $\alpha$ and $n$, we have \begin{align} \PDO(4^{\alpha}(24n) &\equiv \PDO(24n) \pmod{2^5}, \label{E472}\\ \PDO(9^{\alpha}(6n+3)) &\equiv \PDO(6n+3) \pmod{2^5}, \label{E473}\\ \PDO(24n+9) &\equiv 0 \pmod{2^5}, \label{E477}\\ \PDO(9^{\alpha}(216n+117)) &\equiv 0 \pmod{2^5}, \label{E478}\\ \PDO(2^{\alpha}(72n+69)) &\equiv 0 \pmod{2^5}, \label{E474}\\ \PDO(3^{\alpha}(72n+69)) &\equiv 0 \pmod{2^5} \label{E475} \end{align} and \begin{equation} \PDO(2^{\alpha}(144n+42)) \equiv 0 \pmod{2^5}. \label{E479} \end{equation} \end{theorem} \begin{theorem}\label{T6} If n cannot be represented as the sum of two triangular numbers, then for all nonnegative integers $\alpha$ and $r\in\{1,6\}$ we have \begin{equation*} \PDO(2^{\alpha}r(12n+3)) \equiv 0 \pmod{2^4}. \end{equation*} \end{theorem} \begin{corollary}\label{C6} If $p$ is a prime, $p\equiv 3\pmod 4)$, $1\leq j\leq p-1$ and $r\in \{1,6\}$, then for all nonnegative integers $\alpha, \beta$ and $n$, we have \begin{equation} \PDO(2^{\alpha}p^{2\beta+1}r(12pn+12j+3p)) \equiv 0 \pmod{2^4}. \label{E471} \end{equation} \end{corollary} For example, taking $p=3$, we deduce that for all $\alpha,\beta,n \geq 0$, \begin{equation} \PDO(2^{\alpha}3^{\beta}(216n+126)) \equiv 0 \pmod{2^4} \label{E548} \end{equation} and \begin{equation} \PDO(2^{\alpha}3^{\beta}(216n+198)) \equiv 0 \pmod{2^4}. \label{E549} \end{equation} Combining \eqref{E548} and \eqref{E467}, \begin{equation} \PDO(2^{\alpha}3^{\beta}(72n+42)) \equiv 0 \pmod{2^4}. \label{E550} \end{equation} Combining \eqref{E549} and \eqref{E468}, \begin{equation} \PDO(2^{\alpha}3^{\beta}(72n+66)) \equiv 0 \pmod{2^4}. \label{E551} \end{equation} \begin{theorem}\label{T8} If n cannot be represented as the sum of a triangular number and four times a triangular number, then for all nonnegative integers $\alpha$ and $r\in\{1,3\}$ we have \begin{equation*} \PDO(2^{\alpha}r(48n+30)) \equiv 0 \pmod{2^5}. \end{equation*} \end{theorem} \begin{corollary}\label{C8} If $p$ is any prime with $p\equiv 3 \pmod 4)$, $1\leq j\leq p-1$ and $r\in \{1,3\}$, then for all nonnegative integers $\alpha, \beta$ and $n$, we have \begin{equation} \PDO(2^{\alpha}p^{2\beta+1}r(48pn+48j+30p)) \equiv 0 \pmod{2^5}. \label{E484} \end{equation} \end{corollary} For example, taking $p=3$ we find that for all $\alpha,n \geq 0$ and $\beta \geq 1$, \begin{equation} \PDO(2^{\alpha}3^{\beta}(144n+42)) \equiv 0 \pmod{2^5} \label{E554} \end{equation} and \begin{equation} \PDO(2^{\alpha}3^{\beta}(144n+138)) \equiv 0 \pmod{2^5}. \label{E555} \end{equation} Combining \eqref{E554} and \eqref{E479}, for all $\alpha, \beta, n \geq 0$, \begin{equation} \PDO(2^{\alpha}3^{\beta}(144n+42)) \equiv 0 \pmod{2^5} \label{E556} \end{equation} and combining \eqref{E555}, \eqref{E474} and \eqref{E475}, for all $\alpha, \beta, n \geq 0$, \begin{equation} \PDO(2^{\alpha}3^{\beta}(72n+69)) \equiv 0 \pmod{2^5}. \label{E557} \end{equation} \begin{theorem}\label{T10} If n cannot be represented as the sum of twice a pentagonal number and three times a triangular number, then for any nonnegative integer $\alpha$ we have \begin{equation*} \PDO(4^{\alpha}(24n+11)) \equiv 0 \pmod{2^4}. \end{equation*} \end{theorem} \begin{corollary}\label{C10} For any positive integer $k$, let $p_j\geq 5,\ 1\leq j\leq k$ be primes. If $(-2/p_j)=-1$ for every $j$, then for all nonnegative integers $\alpha$ and $n$ with $p_k\nmid n$ we have \begin{equation*} \PDO(6\cdot 4^{\alpha+1} p_1^2p_2^2\cdots p_{k-1}^2p_kn+ 11\cdot 4^{\alpha} p_1^2p_2^2\cdots p_k^2) \equiv 0 \pmod{2^4}. \end{equation*} \end{corollary} \begin{theorem}\label{T11} If n cannot be represented as the sum of a pentagonal number and six times a triangular number, then for any nonnegative integer $\alpha$ we have \begin{equation*} \PDO(4^{\alpha}(48n+38)) \equiv 0 \pmod{2^4}. \end{equation*} \end{theorem} \begin{corollary}\label{C11} For any positive integer $k$, let $p_j\geq 5,\ 1\leq j\leq k$ be primes. If $(-2/p_j)=-1$ for every $j$, then for all nonnegative integers $n$ with $p_k\nmid n$ we have \begin{equation*} \PDO(3\cdot 4^{\alpha+2} p_1^2p_2^2\cdots p_{k-1}^2p_kn+ 38\cdot 4^{\alpha} p_1^2p_2^2\cdots p_k^2) \equiv 0 \pmod{2^4}. \end{equation*} \end{corollary} \begin{theorem}\label{T12} If n cannot be represented as the sum of a pentagonal number and four times a pentagonal number, then we have \begin{equation*} \PDO(24n+5) \equiv 0 \pmod{2^5}. \end{equation*} \end{theorem} \begin{corollary}\label{C12} For any positive integer $k$, let $p_j\geq 5,\ 1\leq j\leq k$ be primes. If $(-1/p_j)=-1$ for every $j$, then for all nonnegative integers $n$ with $p_k\nmid n$ we have \begin{equation*} \PDO(24 p_1^2p_2^2\cdots p_{k-1}^2p_kn+ 5 p_1^2p_2^2\cdots p_k^2) \equiv 0 \pmod{2^5}. \end{equation*} \end{corollary} \begin{theorem}\label{T13} If n cannot be represented as the sum of a pentagonal number and sixteen times a pentagonal number, then we have \begin{equation*} \PDO(24n+17) \equiv 0 \pmod{2^5}. \end{equation*} \end{theorem} \begin{corollary}\label{C13} For any positive integer $k$, let $p_j\geq 5,\ 1\leq j\leq k$ be primes. If $(-1/p_j)=-1$ for every $j$, then for all nonnegative integers $n$ with $p_k\nmid n$ we have \begin{equation*} \PDO(24 p_1^2p_2^2\cdots p_{k-1}^2p_kn+ 17p_1^2p_2^2\cdots p_k^2) \equiv 0 \pmod{2^5}. \end{equation*} \end{corollary} By the binomial theorem, it is easy to see that for all positive integers $k$ and $m$, \begin{equation} f_m^{2^k} \equiv f_{2m}^{2^{k-1}} \pmod{2^{k}}. \label{E438} \end{equation} \begin{proof} [Proof of Theorem \ref{T4}] Using \eqref{L14}, we can rewrite \eqref{E4} as \begin{equation*} \sum_{n=0}^{\infty} \PDO(3n+2) q^n = 2 \frac{f_4^{13}f_6f_{12}}{f_2^{11}f_8^4} + 8q \frac{f_4f_6f_8^4f_{12}}{f_2^7}, \end{equation*} which yields \begin{equation*} \sum_{n=0}^{\infty} \PDO(6n+2) q^n = 2 \frac{f_2^{13}f_3f_6}{f_1^{11}f_4^4} \label{E439} \end{equation*} and \begin{equation*} \sum_{n=0}^{\infty} \PDO(6n+5) q^n = 8 \frac{f_2f_3f_4^4f_6}{f_1^7}. \label{E440} \end{equation*} From \eqref{E438} with $k=3$ and $k=2$, we have \begin{equation*} \frac{f_2^{13}f_3f_6}{f_1^{11}f_4^4} \equiv \frac{f_2f_3f_6}{f_1^3} \pmod{2^3} \label{E441} \end{equation*} and \begin{equation*} \frac{f_2f_3f_4^4f_6}{f_1^7} \equiv \frac{f_3f_4^4f_6}{f_1^3f_2} \pmod{2^2}. \label{E442} \end{equation*} Thus, \begin{equation*} \sum_{n=0}^{\infty} \PDO(6n+2) q^n \equiv 2 \frac{f_2f_3f_6}{f_1^3} \pmod{2^4} \end{equation*} and \begin{equation*} \sum_{n=0}^{\infty} \PDO(6n+5) q^n \equiv 8 \frac{f_3f_4^4f_6}{f_1^3f_2} \pmod{2^5}. \end{equation*} Substituting \eqref{L21} in the above two congruences and extracting the terms containing even and odd powers of $q$, we get \begin{align} \sum_{n=0}^{\infty} \PDO(12n+2) q^n & \equiv 2 \frac{f_2^6f_3^4}{f_1^8f_6^2} \equiv 2 \frac{f_2^2f_3^4}{f_6^2} \pmod{2^4}, \label{E445}\\ \sum_{n=0}^{\infty} \PDO(12n+8) q^n & \equiv 6 \frac{f_2^2f_3^2f_6^2}{f_1^6} \pmod{2^4}, \label{E446}\\ \sum_{n=0}^{\infty} \PDO(12n+5) q^n & \equiv 8 \frac{f_2^{10}f_3^4}{f_1^{10}f_6^2} \equiv 8 \frac{f_2^6}{f_1^2} \pmod{2^5} \label{E447} \end{align} and \begin{equation} \sum_{n=0}^{\infty} \PDO(12n+11) q^n \equiv 24 \frac{f_2^6f_3^2f_6^2}{f_1^8} \equiv 24 f_4f_6^3 \pmod{2^4}. \label{E448} \end{equation} It follows from \eqref{E448} that \begin{equation} \sum\limits_{n=0}^{\infty} \PDO(24n+11) q^n \equiv 8 f_2f_3^3 \equiv 8 f_2\frac{f_6^2}{f_3} \pmod{2^4} \label{E562} \end{equation} and \begin{equation} \PDO(24n+23) \equiv 0 \pmod{2^4}. \label{E449} \end{equation} Employing \eqref{L13} in \eqref{E445} and extracting the terms containing odd powers of $q$, \begin{equation*} \sum_{n=0}^{\infty} \PDO(24n+14) q^n \equiv -8q \frac{f_1^2f_{12}^4}{f_6^2} \equiv 8q f_2f_{12}^3 \pmod{2^4}, \end{equation*} which implies that \begin{equation} \sum_{n=0}^{\infty} \PDO(48n+38) q^n \equiv 8 f_1f_{6}^3 \equiv 8 f_1 \frac{f_{12}^2}{f_6} \pmod{2^4} \label{E565} \end{equation} and \begin{equation} \PDO(48n+14) \equiv 0 \pmod{2^4}. \label{E450} \end{equation} Substituting \eqref{L14} and \eqref{L31} in \eqref{E446}, and extracting the terms containing even and odd powers of $q$, we have \begin{equation} \sum_{n=0}^{\infty} \PDO(24n+8) q^n \equiv 6 \frac{f_2^{18}f_3^3f_6^2}{f_1^{17}f_4^5f_{12}} \equiv 6 \frac{f_2^2f_3^3f_6^2}{f_1f_4f_{12}} \pmod{2^4} \label{E451} \end{equation} and \begin{align} \nonumber \sum_{n=0}^{\infty} \PDO(24n+20) q^n & \equiv 12 \frac{f_2^{15}f_3^4f_{12}}{f_1^{16}f_4^3f_6} + 24 \frac{f_2^6f_3^3f_4^3f_6^2}{f_1^{13}f_{12}}\\ &\equiv 12 \frac{f_2^7f_6f_{12}}{f_4^3} + 24 \frac{f_3^3f_4^3}{f_1} \pmod{2^4}. \label{E452} \end{align} Substituting \eqref{L23} in \eqref{E451} and \eqref{E452}, and extracting even and odd powers of $q$, we have \begin{align} \sum_{n=0}^{\infty} \PDO(48n+8) q^n & \equiv 6 \frac{f_2^2f_3^4}{f_6^2} \pmod{2^4}, \label{E453}\\ \sum_{n=0}^{\infty} \PDO(48n+32) q^n & \equiv 6 \frac{f_1^2f_3^2f_6^2}{f_2^2} \pmod{2^4} \label{E454} \end{align} and \begin{equation} \sum_{n=0}^{\infty} \PDO(48n+44) q^n \equiv 8 f_2^2 f_6^3 \equiv 8 \frac{f_4 f_{12}^2}{f_6} \pmod{2^4}. \label{E455} \end{equation} Again employing \eqref{L13} in \eqref{E453} and extracting the terms containing odd powers of $q$, \begin{equation} \sum_{n=0}^{\infty} \PDO(96n+56) q^n \equiv 8q \frac{f_1^2f_{12}^4}{f_6^2} \equiv 8q f_2f_{12}^3 \pmod{2^4}. \label{E456} \end{equation} By \eqref{E455} and \eqref{E456}, \begin{equation} \PDO(96n+92) \equiv 0 \pmod{2^4} \label{E457} \end{equation} and \begin{equation} \PDO(192n+56) \equiv 0 \pmod{2^4}. \label{E458} \end{equation} From \eqref{E438}, \eqref{E446} and \eqref{E454}, \begin{equation} \PDO(48n+32) \equiv \PDO(12n+8) \pmod{2^4}. \label{E459} \end{equation} Congruence \eqref{E434} follows from \eqref{E459} and mathematical induction. Congruence \eqref{E435} follows from \eqref{E449}, \eqref{E457}, and \eqref{E434}. Similarly, congruence \eqref{E436} follows from \eqref{E450}, \eqref{E458}, and \eqref{E434}. By invoking \eqref{L12} in \eqref{E447} and extracting the terms containing even and odd powers of $q$, \begin{equation} \sum_{n=0}^{\infty} \PDO(24n+5) q^n \equiv 8 \frac{f_1f_4^5}{f_8^2} \equiv 8 f_1f_4 \pmod{2^5} \label{E460} \end{equation} and \begin{equation} \sum_{n=0}^{\infty} \PDO(24n+17) q^n \equiv 16 \frac{f_1f_2^2f_8^2}{f_4} \equiv 16 f_1f_{16} \pmod{2^5}. \label{E461} \end{equation} Congruence \eqref{E437} follows from \eqref{E461}. \end{proof} \begin{proof}[Proofs of Theorem \ref{T5} and Theorem \ref{T7}] From \eqref{E438}, \begin{equation} \frac{f_2^2f_3^4f_4^4}{f_1^8f_6^2} \equiv \frac{f_3^4f_4^4}{f_2^2f_6^2} \pmod{2^3}. \label{E486} \end{equation} Using \eqref{E486}, we rewrite \eqref{E416} as \begin{equation} \sum_{n=0}^{\infty} \PDO(6n+3) q^n \equiv 4 \frac{f_3^4f_4^4}{f_2^2f_6^2} \pmod{2^5}. \label{E489} \end{equation} In view of \eqref{E1021} and \eqref{E1022}, \begin{equation} \sum_{n=0}^{\infty} \PDO(6n+3) q^n \equiv 4 \psi^2(q^2) \phi^2(-q^3) \pmod{2^5}. \label{E492} \end{equation} Substituting \eqref{L41} in \eqref{E492} and extracting the terms involving $q^{3n+1}$, we get \begin{equation} \sum_{n=0}^{\infty} \PDO(18n+9) q^n \equiv 4 q \psi^2(q^6) \phi^2(-q) \pmod{2^5}. \label{E493} \end{equation} Using \eqref{L42} in \eqref{E493} and extracting the terms involving $q^{3n+1}$, \begin{equation} \sum_{n=0}^{\infty} \PDO(54n+27) q^n \equiv 4 \psi^2(q^2) \phi^2(-q^3) \pmod{2^5}. \label{E494} \end{equation} Congruence \eqref{E473} follows from \eqref{E492}, \eqref{E494}, and mathematical induction. Applying \eqref{L13} in \eqref{E489} and using \eqref{E438}, \begin{align*} \sum_{n=0}^{\infty} \PDO(6n+3) q^n & \equiv 4 \frac{f_4^4f_{12}^{10}}{f_2^2f_6^4f_{24}^4} - 16q^3 \frac{f_4^4f_{24}^4}{f_2^2f_{12}^2}\\ & \equiv 4 \frac{f_4^4f_{12}^2}{f_2^2f_6^4} + 16q^3 \frac{f_8^2f_{48}^2}{f_4f_{24}} \pmod{2^5} \end{align*} which implies that \begin{equation} \sum_{n=0}^{\infty} \PDO(12n+3) q^n \equiv 4 \frac{f_2^4f_6^2}{f_1^2f_3^4} \pmod{2^5} \label{E490} \end{equation} and \begin{equation} \sum_{n=0}^{\infty} \PDO(12n+9) q^n \equiv 16q \frac{f_4^2f_{24}^2}{f_2f_{12}} \pmod{2^5}. \label{E491} \end{equation} Congruence \eqref{E477} follows from \eqref{E491}. From \eqref{E491} and \eqref{E1022}, \begin{equation} \sum_{n=0}^{\infty} \PDO(24n+21) q^n \equiv 16 \psi(q) \psi(q^6) \pmod{2^5}. \label{E495} \end{equation} Invoking \eqref{L41} in \eqref{E495} and extracting the terms containing $q^{3n+2}$ and $q^{3n+1}$, \begin{equation} \PDO(72n+69) \equiv 0 \pmod{2^5} \label{E496} \end{equation} for all $n \geq 0$ and \begin{equation} \sum_{n=0}^{\infty} \PDO(72n+45) q^n \equiv 16 \psi(q^2) \psi(q^3) \pmod{2^5}. \label{E497} \end{equation} Using \eqref{L41} in \eqref{E497} and extracting the terms containing $q^{3n+1}$, \begin{equation} \PDO(216n+117) \equiv 0 \pmod{2^5}. \label{E498} \end{equation} Congruence \eqref{E478} follows from \eqref{E473} and \eqref{E498}. Substituting \eqref{L12} and \eqref{L14} in \eqref{E490}, and extracting the terms containing odd powers of $q$, we get \begin{align} \nonumber \sum_{n=0}^{\infty} \PDO(24n+15) q^n & \equiv 8 \frac{f_2^2f_6^{14}f_8^2}{f_1f_3^{12}f_4f_{12}^4} + 16q \frac{f_4^5f_6^2f_{12}^4}{f_1f_3^8f_8^2} \\ & \equiv 8 \psi(q)\psi(q^4) + 16q \psi(q)\psi(q^{12}) \pmod{2^5}. \label{E501} \end{align} Employing \eqref{L41} in \eqref{E501} and extracting the terms involving $q^{3n+2}$, we get \begin{equation} \sum_{n=0}^{\infty} \PDO(72n+63) q^n \equiv 16 \psi(q^3)\psi(q^4) + 8 q \psi(q^3)\psi(q^{12}) \pmod{2^5}. \label{E502} \end{equation} Again, extracting the terms involving $q^{3n+2}$ in \eqref{E502}, we get \begin{equation} \PDO(216n+207) \equiv 0 \pmod{2^5}. \label{E503} \end{equation} Congruence \eqref{E475} follows from \eqref{E496}, \eqref{E503}, and \eqref{E473}. Substituting \eqref{L13} and \eqref{L14} in \eqref{E415}, and extracting the terms containing even powers of $q$, we find \begin{equation} \sum_{n=0}^{\infty} \PDO(12n) q^n \equiv \frac{f_2^{38}f_6^{10}}{f_1^{28}f_3^{4}f_4^{12}f_{12}^4} \equiv \frac{f_1^4f_2^6f_{12}^4}{f_3^4f_4^4f_6^6} \pmod{2^4}. \label{E540} \end{equation} Using \eqref{L13} and \eqref{L14} in \eqref{E540}, and extracting the terms containing even powers of $q$, we have \begin{equation} \sum_{n=0}^{\infty} \PDO(24n) q^n \equiv \frac{f_1^4f_2^6f_6^{18}}{f_3^{20}f_4^4f_{12}^4} \equiv \frac{f_1^4f_2^6f_{12}^4}{f_3^4f_4^4f_6^6} \pmod{2^4}. \label{E541} \end{equation} From \eqref{E540} and \eqref{E541}, \begin{equation} \PDO(2(12n)) \equiv \PDO(12n) \pmod{2^4}. \label{E542} \end{equation} Congruence \eqref{E464} follows from \eqref{E542} and mathematical induction. Substituting \eqref{L31} and \eqref{L14} in \eqref{E415}, and using \eqref{E438}, we get \begin{align*} \sum_{n=0}^{\infty} \PDO(6n) q^n = &\ \frac{f_4^{32}f_{12}^4}{f_2^{24}f_8^{10}f_{24}^2} + 16q^2 \frac{f_4^8f_8^6f_{12}^4}{f_2^{16}f_{24}^2}+ 4q^2 \frac{f_4^{26}f_6^2f_{24}^2}{f_2^{22}f_8^6f_{12}^2} \\ &\ +64q^4 \frac{f_4^2f_6^2f_8^{10}f_{24}^2}{f_2^{14}f_{12}^2} + 32q^2 \frac{f_4^{17}f_6f_{12}}{f_2^{19}} + 8q \frac{f_4^{20}f_{12}^4}{f_2^{20}f_8^2f_{24}^2}\\ &\ +32q^3 \frac{f_4^{14}f_6^2f_8^2f_{24}^2}{f_2^{18}f_{12}^2} +4q\frac{f_4^{29}f_6f_{12}}{f_2^{23}f_8^8} + 64q^3 \frac{f_4^5f_6f_8^8f_{12}}{f_2^{15}}\\ \equiv & \ \frac{f_2^8f_4^{16}f_{12}^4}{f_8^{10}f_{24}^2} + 16q^2 f_8^2f_{16}^2 + 4q^2 \frac{f_4^2f_6^2f_8^2f_{24}^2}{f_2^6f_{12}^2}\\ & \ + 8qf_4^2f_8^2 + 4qf_2f_4f_6f_{12} \pmod{2^5}, \end{align*} which yields \begin{equation} \sum_{n=0}^{\infty} \PDO(12n) q^n \equiv \frac{f_1^8f_2^{16}f_6^4}{f_4^{10}f_{12}^2} + 16q f_4^2f_8^2 + 4q \frac{f_2^2f_3^2f_4^2f_{12}^2}{f_1^6f_6^2} \pmod{2^5} \label{E507} \end{equation} and \begin{equation} \sum_{n=0}^{\infty} \PDO(12n+6) q^n \equiv 8f_2^2f_4^2 + 4f_1f_2f_3f_6 \pmod{2^5}. \label{E508} \end{equation} Substituting \eqref{L34} in \eqref{E508} and extracting the terms containing even and odd powers of $q$, we get \begin{equation} \sum_{n=0}^{\infty} \PDO(24n+6) q^n \equiv 4 \frac{f_1^2f_4^2f_{6}^4}{f_2^2f_{12}^2} + 8 f_1^2f_2^2 \pmod{2^5} \label{E510} \end{equation} and \begin{equation} \sum_{n=0}^{\infty} \PDO(24n+18) q^n \equiv -4 \frac{f_2^4f_3^2f_{12}^2}{f_4^2f_6^2} \pmod{2^5}. \label{E509} \end{equation} By \eqref{E438} and \eqref{E1022}, \begin{equation*} \frac{f_2^4f_3^2f_{12}^2}{f_4^2f_6^2} \equiv \psi^2(q^3) \pmod{2^2} \end{equation*} and \begin{equation*} 4\frac{f_1^2f_4^2f_6^4}{f_2^2f_{12}^2}+8f_1^2f_2^2 \equiv -4 \psi^2(q) \pmod{2^4}. \end{equation*} In view of above identities, \begin{equation} \sum_{n=0}^{\infty} \PDO(24n+6) q^n \equiv -4 \psi^2(q) \pmod{2^4} \label{E512} \end{equation} and \begin{equation} \sum_{n=0}^{\infty} \PDO(24n+18) q^n \equiv -4 \psi^2(q^3) \pmod{2^4}. \label{E511} \end{equation} It follows from \eqref{E511} that \begin{equation} \PDO(72n+42) \equiv 0 \pmod{2^4} \label{E514} \end{equation} and \begin{equation} \PDO(72n+66) \equiv 0 \pmod{2^4} \label{E515} \end{equation} for all $n\geq0$ and \begin{equation} \sum_{n=0}^{\infty} \PDO(72n+18) q^n \equiv -4 \psi^2(q) \pmod{2^4}. \label{E513} \end{equation} Employing \eqref{L11} in \eqref{E510} and \eqref{E509} and extracting the terms containing odd powers of $q$, we get \begin{equation} \sum_{n=0}^{\infty} \PDO(48n+30) q^n \equiv -8 \frac{f_2^2f_3^4f_8^2}{f_1f_4f_6^2} + 16 \frac{f_1^3f_8^2}{f_4} \equiv 8 \psi(q) \psi(q^{4}) \pmod{2^5} \label{E517} \end{equation} and \begin{equation} \sum_{n=0}^{\infty} \PDO(48n+42) q^n \equiv 8q \frac{f_1^4f_6^2f_{24}^2}{f_2^2f_3f_{12}} \equiv 8q \psi(q^3) \psi(q^{12}) \pmod{2^5}. \label{E516} \end{equation} In view of \eqref{E516}, we have \begin{equation} \PDO(144n+42) \equiv 0 \pmod{2^5} \label{E519} \end{equation} and \begin{equation} \PDO(144n+138) \equiv 0 \pmod{2^5} \label{E520} \end{equation} for all $n\geq0$ and \begin{equation} \sum\limits_{n=0}^{\infty} \PDO(144n+90) q^n \equiv 8 \psi(q)\psi(q^4) \pmod{2^5}. \label{E518} \end{equation} Substituting \eqref{L13}, \eqref{L14}, and \eqref{L31} in \eqref{E507}, and extracting the terms containing even and odd powers of $q$, we get \begin{align} \nonumber \sum_{n=0}^{\infty} \PDO(24n) q^n \equiv & \frac{f_1^{12}f_2^{10}f_3^4}{f_4^8f_6^2}+ 16q\frac{f_1^{20}f_3^4f_4^8}{f_2^{14}f_6^2} + 16q\frac{f_2^8f_4^3f_6^4}{f_1^{13}f_3f_{12}}+ 8q \frac{f_2^{17}f_6f_{12}}{f_1^{16}f_4^3}\\ \equiv & \frac{f_3^4f_4^8}{f_1^{20}f_2^6f_6^2}+16qf_4^6 +16q\frac{f_1^3f_4^3f_{12}}{f_3}+8qf_2f_4f_6f_{12} \pmod{2^5} \label{E522} \end{align} and \begin{align} \nonumber \sum_{n=0}^{\infty} \PDO(24n+12) q^n & \equiv -8 \frac{f_1^{16}f_3^4}{f_2^2f_6^2}+ 4\frac{f_2^{20}f_6^4}{f_1^{17}f_3f_4^5f_{12}} + 16 f_2^2f_4^2\\ & \equiv 4 \frac{f_2^4f_6^4}{f_1f_3f_4f_{12}}+8f_2^2f_4^2 \pmod{2^5}. \label{E521} \end{align} Employing \eqref{L33} in \eqref{E521} and extracting the terms involving even and odd powers of $q$, we get \begin{equation} \sum_{n=0}^{\infty} \PDO(48n+12) q^n \equiv 4 \frac{f_1^2f_4^2f_6^4}{f_2^2f_{12}^2} + 8f_1^2f_2^2 \pmod{2^5} \label{E523} \end{equation} and \begin{equation} \sum_{n=0}^{\infty} \PDO(48n+36) q^n \equiv 4 \frac{f_2^4f_3^2f_{12}^2}{f_4^2f_6^2} \pmod{2^5}. \label{E524} \end{equation} In view of \eqref{E510}, \eqref{E509}, \eqref{E523}, and \eqref{E524}, we have \begin{equation} \PDO(2(24n+6)) \equiv \PDO(24n+6) \pmod{2^5} \label{E525} \end{equation} and \begin{equation} \PDO(2(24n+18)) \equiv - \PDO(24n+18) \pmod{2^5}. \label{E526} \end{equation} Congruence \eqref{E467} follows from \eqref{E514}, \eqref{E526}, and \eqref{E464}. Congruence \eqref{E468} follows from \eqref{E515}, \eqref{E526}, and \eqref{E464}. Substituting \eqref{L14}, \eqref{L22}, and \eqref{L31} in \eqref{E522}, and extracting even and odd powers of $q$, we get \begin{align} \nonumber \sum_{n=0}^{\infty} \PDO(48n) q^n & \equiv \frac{f_2^{72}f_6^4}{f_1^{72}f_4^{18}f_{12}^2} +4 q \frac{f_2^{66}f_3^2f_{12}^2}{f_1^{70}f_4^{14}f_6^2} -48q \frac{f_1^2f_2^2f_6^4}{f_3^2}\\ &\equiv \frac{f_2^8f_6^4}{f_1^8f_4^2f_{12}^2} +4q \frac{f_2^2f_3^2f_4^2f_{12}^2}{f_1^6f_6^2} + 16q f_2f_4f_6f_{12} \pmod{2^5} \label{E527} \end{align} and \begin{align} \nonumber \sum_{n=0}^{\infty} \PDO(48n+24) q^n & \equiv 4 \frac{f_2^{69}f_3f_6}{f_1^{71}f_4^{16}}+16\frac{f_2^{60}f_6^{4}}{f_1^{68}f_4^{10}f_{12}^2} + 8 f_1f_2f_3f_6\\ &\equiv 12 f_1f_2f_3f_6 + 16f_2^2f_4^2 \pmod{2^5}. \label{E528} \end{align} Substituting \eqref{L34} in \eqref{E528} and extracting the terms containing even and odd powers of $q$, we get \begin{equation} \sum_{n=0}^{\infty} \PDO(96n+24) q^n \equiv -4 \frac{f_1^2f_4^2f_6^4}{f_2^2f_{12}^2} + 16f_1^2f_2^2 \pmod{2^5} \label{E530} \end{equation} and \begin{equation} \sum_{n=0}^{\infty} \PDO(96n+72) q^n \equiv -12 \frac{f_2^4f_3^2f_{12}^2}{f_4^2f_6^4} \pmod{2^5}. \label{E529} \end{equation} From \eqref{E509} and \eqref{E529}, we have \begin{equation} \PDO(2^2(24n+18)) \equiv 3 \PDO(24n+18) \pmod{2^5}. \label{E531} \end{equation} Employing \eqref{L11} in \eqref{E530} and extracting the terms containing odd powers of $q$, we get \begin{equation} \sum_{n=0}^{\infty} \PDO(192n+120) q^n \equiv 8 \frac{f_2^2f_3^4f_8^2}{f_1f_4f_6^2} \equiv 8\psi(q) \psi(q^4) \pmod{2^5}. \label{E532} \end{equation} Substituting \eqref{L14} and \eqref{L31} in \eqref{E527}, and extracting the terms containing even and odd power of $q$, we have \begin{align} \nonumber \sum_{n=0}^{\infty} \PDO(96n) q^n &\equiv \frac{f_2^{26}f_3^4}{f_1^{20}f_4^8f_6^2} + 16q \frac{f_2^2f_3^4f_4^8}{f_1^{12}f_6^2} +16q\frac{f_2^8f_4^3f_6^4}{f_1^{13}f_3f_{12}}+8q \frac{f_2^{17}f_6f_{12}}{f_1^{16}f_4^3}\\ &\equiv \frac{f_3^4f_4^8}{f_1^{20}f_2^6f_6^2}+16qf_4^6+ 16q\frac{f_1^3f_4^3f_{12}}{f_3} + 8qf_2f_4f_6f_{12} \pmod{2^5} \label{E534} \end{align} and \begin{align} \nonumber \sum_{n=0}^{\infty} \PDO(96n+48) q^n & \equiv 8 \frac{f_3^4f_2^{14}}{f_1^{16}f_6^2} + 4 \frac{f_2^{20}f_6^4}{f_1^{17}f_3f_4^5f_{12}} +16f_1f_2f_3f_6\\ &\equiv 8f_2^2f_4^2+4 \frac{f_2^4f_6^4}{f_1f_3f_4f_{12}}+16f_1f_2f_3f_6 \pmod{2^5}. \label{E533} \end{align} By \eqref{E534} and \eqref{E522} \begin{equation} \PDO(4(24n)) \equiv \PDO(24n) \pmod{2^5}. \label{E535} \end{equation} Congruence \eqref{E472} follows from \eqref{E535} and mathematical induction. By substituting \eqref{L33} and \eqref{L34} in \eqref{E533}, and extracting the terms containing even and odd powers of $q$, \begin{equation} \sum_{n=0}^{\infty} \PDO(192n+48) q^n \equiv 8f_1^2f_2^2+ 20 \frac{f_1^2f_4^2f_6^4}{f_2^2f_{12}^2} \pmod{2^5} \label{E536} \end{equation} and \begin{equation} \sum_{n=0}^{\infty} \PDO(192n+144) q^n \equiv - 12 \frac{f_2^4f_3^2f_{12}^2}{f_4^2f_6^2} \pmod{2^5}. \label{E537} \end{equation} From \eqref{E510} and \eqref{E536}, \begin{equation} \PDO(2^3(24n+6)) \equiv -3 \PDO(24n+6) \pmod{2^5}. \label{E538} \end{equation} In view of \eqref{E509} and \eqref{E537}, \begin{equation} \PDO(2^3(24n+18)) \equiv 3 \PDO(24n+18) \pmod{2^5}. \label{E539} \end{equation} Congruence \eqref{E474} follows from \eqref{E496}, \eqref{E520}, \eqref{E526}, \eqref{E531}, \eqref{E539}, and \eqref{E472}. Congruence \eqref{E479} follows from \eqref{E519}, \eqref{E526}, \eqref{E531}, \eqref{E539}, and \eqref{E472}. \end{proof} \begin{proof}[Proof of Theorem \ref{T6}] Using \eqref{E438} and \eqref{E1022} in \eqref{E490}, \begin{equation} \sum_{n=0}^{\infty} \PDO(12n+3) q^n \equiv 4 \psi^2(q) \pmod{2^4}. \label{E499} \end{equation} From \eqref{E499}, \eqref{E512}, \eqref{E525} and \eqref{E464}, \begin{equation} \sum_{n=0}^{\infty}\PDO(2^{\alpha}(24n+6)) q^n \equiv -4 \psi^2(q) \pmod{2^4} \label{E470} \end{equation} From \eqref{E513}, \eqref{E525} and \eqref{E464}, \begin{equation} \sum_{n=0}^{\infty}\PDO(2^{\alpha}(72n+18)) q^n \equiv \begin{cases} -4 \psi^2(q) \pmod{2^4}, & \text{if } \alpha =0; \\ 4 \psi^2(q) \pmod{2^4}, & \text{if } \alpha \neq 0. \end{cases} \label{E465} \end{equation} Combining \eqref{E499}, \eqref{E470}, and \eqref{E465}, \begin{equation} \sum\limits_{n=0}^{\infty} \PDO(2^{\alpha}r(12n+3)) q^n \equiv \begin{cases} (-1)^{r+1}4 \sum\limits_{k,m=0}^{\infty} q^{k(k+1)/2+m(m+1)/2} \pmod{2^4}, & \textrm{if } \alpha =0; \\ (-1)^{r} 4 \sum\limits_{k,m=0}^{\infty} q^{k(k+1)/2+m(m+1)/2} \pmod{2^4}, & \textrm{if } \alpha \neq 0. \end{cases}\label{E574} \end{equation} Theorem \ref{T6} follows from \eqref{E574}. \end{proof} \begin{proof} [Proof of Theorem \ref{T8}] From \eqref{E517}, \eqref{E525}, \eqref{E532}, \eqref{E538} and \eqref{E472}, we have \begin{equation} \sum_{n=0}^{\infty} \PDO(2^{\alpha} (48n+30)) q^n \equiv 8 \psi(q) \psi(q^4) \pmod{2^5}. \label{E482} \end{equation} From \eqref{E518}, \eqref{E526}, \eqref{E531}, \eqref{E539} and \eqref{E472}, we have \begin{equation} \sum_{n=0}^{\infty} \PDO(2^{\alpha} (144n+90)) q^n \equiv \begin{cases} 8 \psi(q) \psi(q^4) \pmod{2^5}, & \text{if } \alpha = 0; \\ -8 \psi(q) \psi(q^4)\pmod{2^5}, & \text{if } \alpha \neq 0. \end{cases} \label{E483} \end{equation} Theorem \ref{T8} follows from \eqref{E482} and \eqref{E483}. \end{proof} \begin{proof}[Proofs of Theorems \ref{T10}, \ref{T11}, \ref{T12} and \ref{T13}] From \eqref{E455}, \begin{equation} \sum\limits_{n=0}^{\infty} \PDO (96n+44) q^n \equiv 8 f_2 \frac{f_6^2}{f_3} \pmod{2^4}. \label{E485} \end{equation} Replacing $n$ by $8n+3$ in \eqref{E434}, we see that for all $\alpha, n \geq 0$, \begin{equation} \PDO(4^{\alpha}(96n+44)) \equiv \PDO(96n+44) \pmod{2^4}. \label{E487} \end{equation} In view of \eqref{E1022}, \eqref{E562}, \eqref{E485} and \eqref{E487}, \begin{equation} \sum\limits_{n=0}^{\infty} \PDO (4^{\alpha}(24n+11) q^n \equiv 8 f_2 \psi(q^3) \pmod{2^4}. \label{E488} \end{equation} Theorem \ref{T10} follows from \eqref{E488}. From \eqref{E456}, \begin{equation} \sum\limits_{n=0}^{\infty} \PDO (192n+152) q^n \equiv 8 f_1 \frac{f_{12}^2}{f_6} \pmod{2^4}. \label{E566} \end{equation} Replacing $n$ by $16n+12$ in \eqref{E434}, we see that for all $\alpha, n \geq 0$, \begin{equation} \PDO(4^{\alpha}(192n+152)) \equiv \PDO(192n+152) \pmod{2^4}. \label{E567} \end{equation} In view of \eqref{E1022}, \eqref{E565}, \eqref{E566} and \eqref{E567}, \begin{equation} \sum\limits_{n=0}^{\infty} \PDO (4^{\alpha}(48n+38) q^n \equiv 8 f_1 \psi(q^6) \pmod{2^4}. \label{E568} \end{equation} Theorem \ref{T11} follows from \eqref{E568}. Theorem \ref{T12} follows from \eqref{E102} and \eqref{E460}. Theorem \ref{T13} follows from \eqref{E102} and \eqref{E461}. \end{proof} The proofs of Corollaries \ref{C6}, \ref{C8}, \ref{C10}, \ref{C11}, \ref{C12} and \ref{C13} are similar to the proof of Corollary \ref{C34}; hence we omit the details. \begin{proof}[Proof of Theorem \ref{T0}] Replacing $n$ by $2n+1$ in \eqref{E429}, \begin{equation} \PDO(2^{\alpha+2}3^{\beta}(72n+66)) \equiv 0 \pmod{9}. \label{E552} \end{equation} Congruence \eqref{E543} follows readily from \eqref{E551} and \eqref{E552}. Replacing $n$ by $4n+3$ in \eqref{E429}, \begin{equation} \PDO(2^{\alpha+2}3^{\beta}(144n+138)) \equiv 0 \pmod{9}. \label{E558} \end{equation} Congruence \eqref{E544} follows readily from \eqref{E555} and \eqref{E558}. \end{proof} \section{Acknowledgments} The authors would like to thank the anonymous referee for his/her valuable comments and suggestions. The second author was supported by CSIR Senior Research Fellowship (No.\ 09/039(0111)/2014-EMR-I). \begin{thebibliography}{99} \bibitem{A} G. E. Andrews, R. P. Lewis, and J. Lovejoy, Partitions with designated summands, \textit{Acta Arith.} \textbf{102} (2002), 51--66. \bibitem {B} B. C. Berndt, \textit{Ramanujan's Notebooks, Part III}, Springer-Verlag, 1991. \bibitem{BO} N. D. Baruah and K. K. Ojah, Partitions with designated summands in which all parts are odd, \textit{Integers} \textbf{15} (2015), \#A9. \bibitem{BO1} N. D. Baruah and K. K. Ojah, Analogues of Ramanujan's partition identities and congruences arising from his theta functions and modular equations, \textit{Ramanujan J.} \textbf{28} (2012), 385--407. \bibitem{CJS} W. Y. C. Chen, K. Q. Ji, H. T. Jin, and E. Y. Y. Shen, On the number of partitions with designated summands, \textit{J. Number Theory} \textbf{133} (2013), 2929--2938. \bibitem{HGB} M. D. Hirschhorn, F. Garvan, and J. Borwein, Cubic analogue of the Jacobian cubic theta function $\theta(z,q)$, \textit{Canad. J. Math.} \textbf{45} (1993), 673--694. \bibitem{HS1} M. D. Hirschhorn and J. A. Sellers, Elementary proofs of various facts about 3-cores, \textit{Bull. Aust. Math. Soc.} \textbf{79} (2009), 507--512. \bibitem{HS} M. D. Hirschhorn and J. A. Sellers, A congruence modulo 3 for partitions into distinct non-multiples of four, \textit{J. Integer Sequences} \textbf{17} (2014), \href{https://cs.uwaterloo.ca/journals/JIS/VOL17/Sellers/sellers32.html}{Article 14.9.6}. \bibitem{K} W. J. Keith, Congruences for 9-regular partitions modulo 3, \textit{Ramanujan J.} \textbf{35} (2014), 157--164. \bibitem{LW} B. L. S. Lin and A. Y. Z. Wang, Generalisation of Keith's conjecture on 9-regular partitions and 3-cores, \textit{Bull. Aust. Math. Soc.} \textbf{90} (2014), 204--212. \bibitem{X} E. X. W. Xia, Arithmetic properties of partitions with designated summands, \textit{J. Number Theory} \textbf{159} (2016) 160--175. \end{thebibliography} \bigskip \hrule \bigskip \noindent 2010 {\it Mathematics Subject Classification}: Primary 11P83; Secondary 05A17. \noindent \emph{Keywords: } partition with designated summand, congruence, theta function. \bigskip \hrule \bigskip \noindent (Concerned with sequences \seqnum{A077285} and \seqnum{A102186}.) \bigskip \hrule \bigskip \vspace*{+.1in} \noindent Received October 25 2016; revised version received January 13 2017; January 23 2017. Published in {\it Journal of Integer Sequences}, January 28 2017. \bigskip \hrule \bigskip \noindent Return to \htmladdnormallink{Journal of Integer Sequences home page}{http://www.cs.uwaterloo.ca/journals/JIS/}. \vskip .1in \end{document} .