\documentclass[12pt,reqno]{article} \usepackage[usenames]{color} \usepackage{amssymb} \usepackage{graphicx} \usepackage{amscd} \usepackage{bm} \usepackage[colorlinks=true, linkcolor=webgreen, filecolor=webbrown, citecolor=webgreen]{hyperref} \definecolor{webgreen}{rgb}{0,.5,0} \definecolor{webbrown}{rgb}{.6,0,0} \usepackage{color} \usepackage{fullpage} \usepackage{float} \usepackage{graphics,amsmath,amssymb} \usepackage{amsthm} \usepackage{amsfonts} \usepackage{latexsym} \usepackage{epsf} \DeclareMathOperator{\Sym}{Sym} \DeclareMathOperator{\Fun}{Fun} \DeclareMathOperator{\lcm}{lcm} \DeclareMathOperator{\length}{length} \setlength{\textwidth}{6.5in} \setlength{\oddsidemargin}{.1in} \setlength{\evensidemargin}{.1in} \setlength{\topmargin}{-.1in} \setlength{\textheight}{8.4in} \newcommand{\seqnum}[1]{\href{http://oeis.org/#1}{\underline{#1}}} \begin{document} \begin{center} \epsfxsize=4in \leavevmode\epsffile{logo129.eps} \end{center} \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{corollary}[theorem]{Corollary} \newtheorem{lemma}[theorem]{Lemma} \newtheorem{proposition}[theorem]{Proposition} \theoremstyle{definition} \newtheorem{definition}[theorem]{Definition} \newtheorem{example}[theorem]{Example} \newtheorem{conjecture}[theorem]{Conjecture} \theoremstyle{remark} \newtheorem{remark}[theorem]{Remark} \begin{center} \vskip 1cm{\LARGE\bf Number of Dissections of the Regular \\ \vskip .1in $n$-gon by Diagonals } \vskip 1cm \large Joris N. Buloron, Roberto B. Corcino, and Jay M. Ontolan\\ Cebu Normal University\\ Cebu City, Philippines\\ \href{mailto:jorisbuloron@yahoo.com}{\tt jorisbuloron@yahoo.com} \end{center} \vskip .2 in \begin{abstract} This paper presents a formula for the distinct dissections by diagonals of a regular $n$-gon modulo the action of the dihedral group. This counting includes dissection with intersecting or non-intersecting diagonals. We utilize a corollary of the Cauchy-Frobenius theorem, which involves counting of cycles. We also give an explicit formula for the prime number case. We give as a remark the number of distinct dissections, modulo the action of the cyclic group of finite order. \end{abstract} \section{Introduction} The theory of polygon dissection has proven to be a rich area of mathematical thoughts. Cayley derived the number of ways to dissect an $n-$gon using a specified number of diagonals. Other mathematicians gave proofs of older formulas involving polygon dissections using new techniques, such as generating functions, Legendre polynomials, and Lagrange inversion \cite{ca}. Przytycki and Sikora showed relationships between polygon dissections and special types of numbers, such as the Catalan numbers \cite{ps}. Explicit formulas for dissections of a regular polygon using non-intersecting diagonals were derived in a paper of Bowman and Regev \cite{br}. More recently, Siegel counted the number of dissections of a regular $n$-gon using non-intersecting diagonals in his thesis \cite{s}. The main aim of this paper is to count the number of distinct dissections of an unlabeled regular $n$-gon by diagonals modulo the dihedral group. We consider both intersecting and non-intersecting diagonals in our counting. To do this, we first label the vertices of the polygon and determine which dissections of this labeled $n$-gon are the same up to the canonical action of the dihedral group of degree $n$. We present the following definition: \begin{definition} Let $n\geq 3$. A regular polygon with $n$ vertices is called an $n$-gon. A {\em diagonal} of an $n$-gon is a segment extending from a vertex to a non-adjacent vertex. A {\em dissection} of the $n$-gon is any set of crossing or non-crossing diagonals of the $n$-gon. A dissection without any diagonal is an {\em empty dissection}. \end{definition} The main result of this paper is anchored on a consequence of the Cauchy-Frobenius theorem \cite[Corollary\ 1.7A, p.\ 26]{dm}. We give it below as Lemma \ref{cf}. \begin{lemma} Let $G$ be a finite group acting on a finite set $\Delta$. Suppose $\Gamma$ is a non-empty finite set and $\Fun(\Delta,\Gamma)$ is the set of all functions from $\Delta$ to $\Gamma$, then $G$ acts on $\Fun(\Delta,\Gamma)$ by $$f^x(\delta)=f(\delta^{x^{-1}})\,\,\,(\forall f\in \Fun(\Delta,\Gamma),x\in G,\delta\in\Delta.)$$ In addition, the number of orbits of this action is equal to $$\frac{1}{|G|}\left(\sum_{g\in G}|\Gamma|^{c(g)}\right)$$ where $c(g)$ counts the number of cycles of $g$ as it acts on $\Delta$, including the trivial cycles, if they exist. \label{cf} \end{lemma} \section{Preliminaries} Let $[n]=\left\{1,2,\ldots,n\right\}$ be the set of vertices of a regular $n$-gon. It is well-known that the {\em dihedral group} of degree $n$, with presentation $D_n=\langle r,s:r^n=1=s^2,srs=r^{-1}\rangle$, acts on $[n]$ in a natural way. This is obvious when we express the elements of $D_n$ as permutations of $[n]$ corresponding to the symmetries of an $n$-gon, i.e., $D_n\leq\Sym([n])$. Here, $r$ is the $\frac{2\pi}{n}$-rotation and $s$ is the reflection along the axis through center and vertex 1. \begin{definition} Let $i,j\in [n]$ be vertices of the $n$-gon. If $i 4$ be a natural number. Then $\rho[D_n]\cong D_n$. \label{mono} \end{proposition} \begin{proof} Let $r,s$ be the generators of $D_n$. When we express $\rho(r)$ as a product of disjoint cycles, we see that $\left(\left\{1,3\right\}\,\,\left\{2,4\right\}\,\,\left\{3,5\right\}\,\,\ldots\,\,\left\{n-1,1\right\}\,\,\left\{n,2\right\}\right)$ is one of these cycles. Since this cycle is of length $n$ and $|\rho(r)|\leq n$, then the length of each cycle is at most $n$ and so $|\rho(r)|=n$. We now show that $|\rho(s)|=2$. Since $|s|=2$, then $|\rho(s)|$ divides 2 and so the length of each cycle is at most two. If $n$ is odd then $\rho(s)$ sends $\left\{1,\frac{n+1}{2}\right\}$ to $\left\{1,\frac{n+3}{2}\right\}$ and this creates a cycle of length two. If $n$ is even, $\rho(s)$ sends $\left\{1,\frac{n}{2}\right\}$ to $\left\{1,\frac{n+4}{2}\right\}$ and again, this makes a cycle of length two. Hence, $|\rho(s)|=2$. Finally, we obtain $$\rho(s)\rho(r)\rho(s)=\rho(srs)=\rho(r^{-1})=\rho(r)^{-1}.$$ \end{proof} For $x\in D_n$, we now count the number of cycles in the decomposition of $\rho(x)$. We make use of the well-known properties of permutations stated as Lemma \ref{cycles}. \begin{lemma} Let $\alpha\in \Sym([n])$ such that $\alpha=c_1c_2\cdots c_l$, where $c_i$'s are disjoint cycles, then $$|\alpha|=\lcm(\length(c_i):i\in\left\{1,2,\ldots,l\right\}).$$ If $\alpha=(a_1\,\,a_2\,\,\ldots\,\,a_k)$, then the number of disjoint cycles of $\alpha^t$, where $1\leq t\leq k$, is $\gcd(k,t)$. \label{cycles} \end{lemma} \begin{lemma} Let $n\geq 4$. For $i\in\left\{1,2,\ldots,n\right\}$, \begin{displaymath} c(r^i)=\begin{cases} \left(\frac{n-4}{2}\right)\gcd(n,i)+\gcd(\frac{n}{2},i), & \text{if $n$ is even}; \\ \left(\frac{n-3}{2}\right)\gcd(n,i), & \text{if $n$ is odd.} \end{cases} \end{displaymath} \label{lem3} \end{lemma} \begin{proof} We start with $n=4$. Then $\Delta_4=\left\{\left\{1,3\right\},\left\{2,4\right\}\right\}$, $i\in\left\{1,2,3,4\right\}$ and we obtain the following computations: \begin{enumerate} \item[$i=1$.] $\rho(r)=\left(\left\{1,3\right\}\,\,\left\{2,4\right\}\right)$ and so $c(r)=1=\left(\frac{4-4}{2}\right)\gcd(4,1)+\gcd(\frac{4}{2},1)$; \item[$i=2$.] $\rho(r^2)=\left(\left\{1,3\right\}\right)\left(\left\{2,4\right\}\right)=1_{\Delta_4}$ and so $c(r^2)=2=\left(\frac{4-4}{2}\right)\gcd(4,2)+\gcd(\frac{4}{2},2)$; \item[$i=3$.] $\rho(r^3)=\left(\left\{1,3\right\}\,\,\left\{2,4\right\}\right)$ and so $c(r^3)=1=\left(\frac{4-4}{2}\right)\gcd(4,3)+\gcd(\frac{4}{2},3)$; \item[$i=4$.] $\rho(r^4)=\rho(1_{[4]})=1_{\Delta_4}=\left(\left\{1,3\right\}\right)\left(\left\{2,4\right\}\right)$ and so $c(r^4)=2=\left(\frac{4-4}{2}\right)\gcd(4,4)+\gcd(\frac{4}{2},4)$. \end{enumerate} We let $n>4$ and consider two cases. Firstly, assume $n$ is even. The elements of $\Delta_n$ can be partitioned according to different cycle lengths and we get the following cycle decomposition: $$\rho(r)=\underbrace{\left(\left\{1,3\right\}\,\,\left\{2,4\right\}\,\,\ldots\,\,\left\{n,2\right\}\right)}_{n-\text{cycle}}\underbrace{\left(\left\{1,4\right\}\,\,\left\{2,5\right\}\,\,\ldots\,\,\left\{n,3\right\}\right)}_{n-\text{cycle}}\ldots$$ $$\underbrace{\left(\left\{1,n/2\right\}\,\,\left\{2,(n+2)/2\right\}\,\,\ldots\,\,\left\{n,(n-2)/2\right\}\right)}_{n-\text{cycle}}\underbrace{\left(\left\{1,(n+2)/2\right\}\,\,\left\{2,(n+4)/2\right\}\,\,\ldots\,\,\left\{n/2,n\right\}\right)}_{n/2-\text{cycle}}$$ in which there are $\frac{n-4}{2}$ $n$-cycles and only one $\frac{n}{2}$-cycle. For $i\in\left\{1,2,\ldots,n\right\}$: $$\rho(r^i)=\left(\left\{1,3\right\}\,\,\left\{2,4\right\}\,\,\ldots\,\,\left\{n,2\right\}\right)^i\left(\left\{1,4\right\}\,\,\left\{2,5\right\}\,\,\ldots\,\,\left\{n,3\right\}\right)^i\ldots$$ $$\left(\left\{1,n/2\right\}\,\,\left\{2,(n+2)/2\right\}\,\,\ldots\,\,\left\{n,(n-2)/2\right\}\right)^i\left(\left\{1,(n+2)/2\right\}\,\,\left\{2,(n+4)/2\right\}\,\,\ldots\,\,\left\{n/2,n\right\}\right)^i.$$ By Lemma \ref{cycles}, we obtain $$c(r^i)=\left(\frac{n-4}{2}\right)\gcd(n,i)+\gcd(n/2,i).$$ Secondly, take $n$ to be odd. Similar to the first case, the elements of $\Delta_n$ can be partitioned according to different cycle lengths. We obtain the following: $$\rho(r)=\underbrace{\left(\left\{1,3\right\}\,\,\left\{2,4\right\}\,\,\ldots\,\,\left\{n,2\right\}\right)}_{n-\text{cycle}}\underbrace{\left(\left\{1,4\right\}\,\,\left\{2,5\right\}\,\,\ldots\,\,\left\{n,3\right\}\right)}_{n-\text{cycle}}\ldots$$ $$\underbrace{\left(\left\{1,(n+1)/2\right\}\,\,\left\{2,(n+3)/2\right\}\,\,\ldots\,\,\left\{n,(n-1)/2\right\}\right)}_{n-\text{cycle}}$$ in which there are $\frac{n-3}{2}$ $n$-cycles. As with the above, we can compute the following: $$c(r^i)=\left(\frac{n-3}{2}\right)\gcd(n,i).$$ \end{proof} \begin{lemma} Let $n\geq 4$ and $s_v\in D_n\backslash \langle r\rangle$ be a reflection with axis passing through the center and a vertex. Then \begin{displaymath} c(s_v)=\begin{cases} \frac{n^2-2n}{4}, & \text{if $n$ is even}; \\ \frac{n^2-2n-3}{4}, & \text{if $n$ is odd.} \end{cases} \end{displaymath} \label{lem4} \end{lemma} \begin{proof} Note that the case $n=4$ is an easy computation. We consider two cases for $n>4$. Firstly, take $n$ to be even. The axis of $s_v$ is the diagonal $\left\{i,i+\frac{n}{2}\bmod n\right\}$. Form $$\Delta_o=\left\{\left\{i-k\bmod n,i+k\bmod n\right\}:k\in\left\{1,2,\ldots,\frac{n-2}{2}\right\}\right\}.$$ Observe that $(i\pm k\bmod n)^{s_v}=i\mp k\bmod n$ and preserves both $i$ and $i+\frac{n}{2}\bmod n$. This implies that $s_v$ fixes setwise each element of $\Delta_o\cup\left\{\left\{i,i+\frac{n}{2}\bmod n\right\}\right\}$. Let $\left\{\alpha,\beta\right\}$ be an element of $\Delta_n\backslash\left(\Delta_o\cup\left\{\left\{i,i+\frac{n}{2}\bmod n\right\}\right\}\right)$, we consider three subcases. Let $\alpha=i$. It follows that $\beta\in\left\{i\pm k\bmod n: k\in\left\{2,\ldots,\frac{n-2}{2}\right\}\right\}$. If $\beta=i+k\bmod n$ then $\left\{i,i+k\bmod n\right\}^{s_v}=\left\{i,i-k\bmod n\right\}$. If $\beta=i-k\bmod n$ then $\left\{i,i-k\bmod n\right\}^{s_v}=\left\{i,i+k\bmod n\right\}$. Similar argument when $\alpha=i+\frac{n}{2}\bmod n$. Suppose $\left\{\alpha,\beta\right\}\cap\left\{i,i+\frac{n}{2}\bmod n\right\}$. It implies that $\alpha,\beta\in\left\{i\pm k\bmod n:k\in\left\{1,2,\ldots,\frac{n-2}{2}\right\}\right\}$. If $\alpha=i+k_1\bmod n$ and $\beta=i+k_2\bmod n$ where $k_1,k_2\in\left\{1,2,\ldots,\frac{n-2}{2}\right\}$, then $\left\{i+k_1\bmod n,i+k_2\bmod n\right\}^{s_v}=\left\{i-k_1\bmod n,i-k_2\bmod n\right\}$. Similar argument can be used for $\alpha=i-k_1\bmod n$ and $\beta=i-k_2\bmod n$. Without loss of generality, assume $\alpha=i-k_1\bmod n$ and $\beta=i+k_2\bmod n$. It means that $k_1\neq k_2$ and so $\left\{i-k_1\bmod n,i+k_2\bmod n\right\}^{s_v}=\left\{i+k_1\bmod n,i-k_2\bmod n\right\}$. In all these subcases, we obtain $\left\{\alpha,\beta\right\}^{s_v}\neq\left\{\alpha,\beta\right\}$. Proposition \ref{mono} and Lemma \ref{cycles} assure that the length of every cycle in $\rho(s_v)$ is at most two. The above results tell us that each element of $\Delta_o\cup\left\{i,i+\frac{n}{2}\bmod n\right\}$ creates an $1$-cycle in $\rho(s_v)$, while each element of $\Delta_n\backslash\left(\Delta_o\cup\left\{i,i+\frac{n}{2}\bmod n\right\}\right)$ creates a $2$-cycle. Hence, $$c(s_v)=\frac{n^2-2n}{4}.$$ For the second case, assume $n$ is an odd integer. The axis of $s_v$ is the segment extending from vertex $i$ to the midpoint of the edge $\left\{i+(n-1)/2\bmod n,i-(n-1)/2\bmod n\right\}$. Form $$\Delta_o=\left\{\left\{i+k\bmod n,i-k\bmod n\right\}:k\in\left\{1,2,\ldots,\frac{n-1}{2}\right\}\right\}.$$ Observe that $i^{s_v}=i$ and $(i\pm k\bmod n)^{s_v}=i\mp k\bmod n$. Thus, each element of $$\Delta_o\backslash\left\{\left\{i+\frac{n-1}{2}\bmod n,i-\frac{n-1}{2}\bmod n\right\}\right\}$$ creates an $1$-cycle in $\rho(s_v)$. Let $\left\{\alpha,\beta\right\}\in\Delta_n\backslash\Delta_o$. We consider two subcases. Without loss of generality, assume $\alpha=i$. It follows that $\beta\in\left\{i\pm k\bmod n:k\in\left\{2,\ldots,(n-1)/2\right\}\right\}$ and either $\left\{i,i+k\bmod n\right\}^{s_v}=\left\{i,i-k\bmod n\right\}$ or $\left\{i,i-k\bmod n\right\}^{s_v}=\left\{i,i+k\bmod n\right\}$. Let $i\notin\left\{\alpha,\beta\right\}$. It means that $\alpha,\beta\in\left\{i\pm k\bmod n:k\in\left\{1,2,\ldots,(n-1)/2\right\}\right\}$. As with the above, we always obtain $\left\{\alpha,\beta\right\}^{s_v}\neq\left\{\alpha,\beta\right\}$ in different subcases. Since the length of each cycle of $\rho(s_v)$ is at most two, then the two subcases above imply that every $\left\{\alpha,\beta\right\}\in\Delta_n\backslash\Delta_o$ creates a $2$-cycle in $\rho(s_v)$. Hence, $$c(s_v)=\frac{n^2-2n-3}{4}.$$ \end{proof} \begin{lemma} Let $n\geq 6$ be even. Suppose $s_e\in D_n\backslash \langle r\rangle$ to be a reflection with axis passing through the origin and midpoints of opposing edges. Then $$c(s_e)=\frac{n^2-2n-4}{4}$$ \label{lem5} \end{lemma} \begin{proof} The axis of $s_e$ is the segment extending from the midpoint of an edge $\left\{i,i+1\bmod n\right\}$ to the midpoint of $\left\{i-\left(\frac{n}{2}-1\right)\bmod n,i+\frac{n}{2}\bmod n\right\}$. We note that for $j\in [n]$, $j^{s_e}=(2i+1)-j\bmod n$. Let $$\Delta_o=\left\{\left\{i+k\bmod n,i-k+1\bmod n\right\}:k\in\left\{2,3,\ldots,(n-2)/2\right\}\right\}.$$ It should be noted that $s_e$ fixes setwise each element of $\Delta_o$ and creates an $1$-cycle in $\rho(s_e)$. For $\left\{\alpha,\beta\right\}\in\Delta_n\backslash\Delta_o$, there exists $k\in\left\{1,2,\ldots,\frac{n}{2}\right\}$ such that if $\alpha=i+k\bmod n$, then $\beta\in[n]\backslash\left\{i+k\bmod n,i-k+1\bmod n\right\}$ and so $$\left\{i+k\bmod n,\beta\right\}^{s_e}=\left\{i-k+1\bmod n,\beta^{s_e}\right\}\neq \left\{\alpha,\beta\right\}.$$ Also, if $\alpha=i-k+1\bmod n$ then $\beta\in[n]\backslash\left\{i+k\bmod n,i-k+1\bmod n\right\}$ and so $$\left\{i-k+1\bmod n,\beta\right\}^{s_e}=\left\{i+k\bmod n,\beta^{s_e}\right\}\neq \left\{\alpha,\beta\right\}.$$ Hence, each element of $\Delta_n\backslash \Delta_o$ creates a $2$-cycle of $\rho(s_e)$. That is, $$c(s_e)=\frac{n^2-2n-4}{4}.$$ \end{proof} We now collect the properties from Lemmas \ref{lem3}, \ref{lem4} and \ref{lem5} and plug them in to the equation in Proposition \ref{prop1} to obtain our main result. \begin{theorem} Let $n\geq 3$. The number $\gamma(n)$ of distinct ways of dissecting an $n$-gon modulo the action of the dihedral group $D_n$ is: \begin{displaymath} \gamma(n)=\begin{cases} \frac{1}{2n}\left(\left(\displaystyle\overset{n}{\underset{i=1}{\sum}}2^{\left(\frac{n-4}{2}\right)\gcd(n,i)+\gcd(\frac{n}{2},i)}\right) + \frac{n}{2}\left(2^{\frac{n^2-2n}{4}}+2^{\frac{n^2-2n-4}{4}}\right)\right), & \text{if $n$ is even}; \\ \frac{1}{2n}\left(\left(\displaystyle\overset{n}{\underset{i=1}{\sum}}2^{\left(\frac{n-3}{2}\right)\gcd(n,i)}\right) + n\left(2^{\frac{n^2-2n-3}{4}}\right)\right), & \text{if $n$ is odd.} \end{cases} \end{displaymath} \label{thm1} \end{theorem} \begin{corollary} The number of dissections of a regular $p$-gon modulo the dihedral action, where $p$ is prime with $p\geq 3$, is $$\frac{(p-1)\cdot 2^{\frac{p-3}{2}}+2^{\frac{p^2-3p}{2}}+p\cdot2^{\frac{p^2-2p-3}{4}}}{2p}.$$ \label{thm2} \end{corollary} \section{Remark} The number $\gamma_c(n)$ of distinct ways of dissecting an $n$-gon modulo the action of the cyclic group $\langle (1\,\,2\,\,\ldots\,\,n)\rangle$ is \begin{displaymath} \gamma_c(n)=\begin{cases} \frac{1}{n}\left(\displaystyle\overset{n}{\underset{i=1}{\sum}}2^{\left(\frac{n-4}{2}\right)\gcd(n,i)+\gcd(\frac{n}{2},i)}\right), & \text{if $n$ is even}; \\ \frac{1}{n}\left(\displaystyle\overset{n}{\underset{i=1}{\sum}}2^{\left(\frac{n-3}{2}\right)\gcd(n,i)}\right), & \text{if $n$ is odd.} \end{cases} \end{displaymath} Moreover, when $n=p\geq 3$, then $$\gamma_c(p)=\frac{(p-1)\cdot 2^{\frac{p-3}{2}}+2^{\frac{p^2-3p}{2}}}{p}.$$ \section{Acknowledgment} The authors would like to thank Cebu Normal University for its support while the research was being undertaken. \begin{thebibliography}{5} \bibitem{br} D. Bowman and A. Regev, Counting symmetry classes of dissections of a convex regular polygon, preprint, 2012, \url{http://arxiv.org/abs/1209.6270}. \bibitem{ca} D. Callan, Polygon dissections and marked Dyck paths, preprint, 2005, \url{https://pdfs.semanticscholar.org/d405}. \bibitem{dm} J. Dixon and B. Mortimer, {\it Permutation Groups}, Springer-Verlag, 1996. \bibitem{ps} J. Przytycki and A. Sikora, Polygon dissections and Euler, Fuss, Kirkman and Cayley numbers, preprint, 1998, \url{https://arxiv.org/abs/math/9811086}. \bibitem{s} A. Siegel, Counting the number of distinct dissections of a regular $n$-gon, thesis, University of Akron, 2014. \end{thebibliography} \bigskip \hrule \bigskip \noindent 2010 {\it Mathematics Subject Classification}: Primary 05C25; Secondary 05C69. \noindent \emph{Keywords: } $n$-gon, dissection, dihedral group. \bigskip \hrule \bigskip \vspace*{+.1in} \noindent Received September 13 2016; revised version received May 9 2016; June 30 2017; July 18 2017. Published in {\it Journal of Integer Sequences}, July 29 2017. \bigskip \hrule \bigskip \noindent Return to \htmladdnormallink{Journal of Integer Sequences home page}{http://www.cs.uwaterloo.ca/journals/JIS/}. \vskip .1in \end{document} .