\documentclass[12pt,reqno]{article} \usepackage[usenames]{color} \usepackage{amssymb} \usepackage{graphicx} \usepackage{amscd} \usepackage[colorlinks=true, linkcolor=webgreen, filecolor=webbrown, citecolor=webgreen]{hyperref} \definecolor{webgreen}{rgb}{0,.5,0} \definecolor{webbrown}{rgb}{.6,0,0} \usepackage{color} \usepackage{fullpage} \usepackage{float} \usepackage{psfig} \usepackage{graphics,amsmath,amssymb} \usepackage{amsthm} \usepackage{amsfonts} \usepackage{latexsym} \usepackage{epsf} %\usepackage{mathrsfs} \setlength{\textwidth}{6.5in} \setlength{\oddsidemargin}{.1in} \setlength{\evensidemargin}{.1in} \setlength{\topmargin}{-.1in} \setlength{\textheight}{8.4in} \newcommand{\seqnum}[1]{\href{http://oeis.org/#1}{\underline{#1}}} \newcommand{\lrf}[1]{\left\lfloor #1\right\rfloor} \begin{document} \begin{center} \epsfxsize=4in \leavevmode\epsffile{logo129.eps} \end{center} \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{corollary}[theorem]{Corollary} \newtheorem{lemma}[theorem]{Lemma} \newtheorem{proposition}[theorem]{Proposition} \theoremstyle{definition} \newtheorem{definition}[theorem]{Definition} \newtheorem{example}[theorem]{Example} \newtheorem{conjecture}[theorem]{Conjecture} \theoremstyle{remark} \newtheorem{remark}[theorem]{Remark} \begin{center} \vskip 1cm{\LARGE\bf Combinatorics of Generalized\\ \vskip .11in Motzkin Numbers} \vskip 1cm {\large Yi Wang and Zhi-Hai Zhang\\ School of Mathematical Sciences \\ Dalian University of Technology \\ Dalian 116024 \\ PR China \\ \href{mailto:wangyi@dlut.edu.cn}{\tt wangyi@dlut.edu.cn} \\ \href{mailto:zzhdlut008@dlut.edu.cn}{\tt zzhdlut008@dlut.edu.cn} \\ } \end{center} \vskip .2 in \begin{abstract} The generalized Motzkin numbers are common generalizations of the Motzkin numbers and the Catalan numbers. We investigate their combinatorial properties, including the combinatorial interpretation, the recurrence relation, the binomial transform, the Hankel transform, the log-convexity, the continued fraction of the generating function, and the total positivity of the corresponding Hankel matrix. \end{abstract} \section{Introduction} The Motzkin numbers $M_n$ count the number of lattice paths from $(0, 0)$ to $(n, 0)$ with steps $H=(1, 0), U=(1, 1)$ and $D=(1,-1)$, never going below the $x$-axis \cite{Aig98,DS77}. It is well known that the Motzkin numbers satisfy the recursion $$(n+3)M_{n+1}=(2n+3)M_n+3nM_{n-1}$$ (see \cite{Sul01} for a combinatorial proof). The Motzkin numbers are closely related to the ubiquitous Catalan numbers $C_n=\frac{1}{n+1}\binom{2n}{n}$, which count the number of lattice paths from $(0, 0)$ to $(2n, 0)$ with steps $U$ and $D$, never falling below the $x$-axis. For example, $$M_n=\sum_{k}\binom{n}{2k}C_k,\qquad C_{n+1}=\sum_{k}\binom{n}{k}M_k.$$ It follows that $$C_{n+1}=\sum_{k}\binom{n}{2k}C_k2^{n-2k}.$$ See \cite{Don77,DS77} for combinatorial interpretations of these identities. On the other hand, the Motzkin numbers and the Catalan numbers enjoy some similar properties, including the recurrence relations $$M_{n+1}=M_n+\sum_{k=0}^{n-1}M_kM_{n-1-k},\qquad C_{n+1}=\sum_{k=0}^nC_kC_{n-k}$$ and the generating functions $$\sum_{n\ge 0}M_nx^n=\frac{1-x-\sqrt{1-2x-3x^2}}{2x^2},\qquad \sum_{n\ge 0}C_nx^n=\frac{1-\sqrt{1-4x}}{2x}.$$ Very recently, Z.-W. Sun~\cite{Sun14} introduced {\it the generalized Motzkin numbers} \begin{equation}\label{gmn-def} M_n(b,c):=\sum_{k=0}^{\lrf{n/2}}\binom{n}{2k}C_kb^{n-2k}c^k, \quad n=0,1,2,\ldots, \end{equation} where $b,c\in\mathbb{N}$. Clearly, the generalized Motzkin numbers are common generalizations of the Motzkin numbers and the Catalan numbers: $$M_n(1,1)=M_n,\quad M_n(2,1)=C_{n+1}.$$ It is also known that $M_n(3,1)=H_n$ are the restricted hexagonals numbers described in Harary and Read \cite{HR70} and $M_n(0,1)$ form the sequence $(C_0,0,C_1,0,C_2,0,\ldots)$ of the Catalan numbers. Sun~\cite{Sun14} established the recursion \begin{equation*}\label{gmn-rr} (n+3)M_{n+1}(b,c)=b(2n+3)M_n(b,c)-(b^2-4c)nM_{n-1}(b,c), \end{equation*} the generating function \begin{equation}\label{gmn-gf} M(b,c;x):=\sum_{n\ge 0}M_n(b,c)x^n=\frac{1-bx-\sqrt{(1-bx)^2-4cx^2}}{2cx^2}, \end{equation} and applied them to study arithmetic properties of the generalized Motzkin numbers. The object of this paper is to investigate combinatorial properties of the generalized Motzkin numbers, including the combinatorial interpretation, the recurrence relation, the binomial transform, the Hankel transform, the log-convexity, the continued fraction of the generating function, and the total positivity of the corresponding Hankel matrix. Let $\alpha=(a_n)_{n\ge 0}$ be a sequence of nonnegative numbers. We say that the sequence is {\it log-convex} if $a_{i}a_{j+1}\ge a_{i+1}a_{j}$ for $0\le i