\documentclass[12pt,reqno]{article} \usepackage[usenames]{color} \usepackage{amssymb} \usepackage{graphicx} \usepackage{amscd} \usepackage[colorlinks=true, linkcolor=webgreen, filecolor=webbrown, citecolor=webgreen]{hyperref} \definecolor{webgreen}{rgb}{0,.5,0} \definecolor{webbrown}{rgb}{.6,0,0} \usepackage{color} \usepackage{fullpage} \usepackage{float} \usepackage{psfig} \usepackage{graphics,amsmath,amssymb} \usepackage{amsthm} \usepackage{amsfonts} \usepackage{latexsym} \usepackage{epsf} \setlength{\textwidth}{6.5in} \setlength{\oddsidemargin}{.1in} \setlength{\evensidemargin}{.1in} \setlength{\topmargin}{-.1in} \setlength{\textheight}{8.4in} \newcommand{\seqnum}[1]{\href{http://oeis.org/#1}{\underline{#1}}} \usepackage[ruled,boxed,commentsnumbered]{algorithm2e} \newcounter{enumibis} \newcounter{enu} \newcounter{enubis} \newenvironment{mylist} {\begin{list}{P--\arabic{enu}}{\usecounter{enu}}\setcounter{enu}{\theenubis}} {\setcounter{enubis}{\theenu}\end{list}} \DeclareMathOperator{\nm}{N} \newcommand{\Q}{\mathord{\mathbb Q}} \newcommand{\G}{\mathord{\mathbb G}} \newcommand{\F}{\mathord{\mathbb F}} \newcommand{\Z}{\mathord{\mathbb Z}} \newcommand{\N}{\mathord{\mathbb N}} \begin{document} \begin{center} \epsfxsize=4in \leavevmode\epsffile{logo129.eps} \end{center} \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{corollary}[theorem]{Corollary} \newtheorem{lemma}[theorem]{Lemma} \newtheorem{proposition}[theorem]{Proposition} \theoremstyle{definition} \newtheorem{definition}[theorem]{Definition} \newtheorem{example}[theorem]{Example} \newtheorem{conjecture}[theorem]{Conjecture} \theoremstyle{remark} \newtheorem{remark}[theorem]{Remark} \newtheorem{problem}[theorem]{Problem} \begin{center} \vskip 1cm{\LARGE\bf Quadratic Form Representations via \\ \vskip .1in Generalized Continuants } \vskip 1cm \large Charles Delorme\footnote{Deceased.}\\ Laboratoire de Recherche en Informatique \\ B\^{a}timent 650 \\ Universit\'e Paris Sud\\ 91405 Orsay Cedex \\ France \\ \href{cd@lri.fr}{\tt cd@lri.fr}\\ \ \\ Guillermo Pineda-Villavicencio \\ Centre for Informatics and Applied Optimisation \\ Federation University Australia \\ Mount Helen, Victoria 3350\\ Australia \\ \href{mailto:work@guillermo.com.au}{\tt work@guillermo.com.au} \end{center} \vskip .2 in \begin{abstract} H.~J.~S. Smith proved Fermat's two-square theorem using the notion of palindromic continuants. In this paper we extend Smith's approach to proper binary quadratic form representations in some commutative Euclidean rings, including rings of integers and rings of polynomials over fields of odd characteristic. Also, we present new deterministic algorithms for finding the corresponding proper representations. \end{abstract} \section{Introduction} Fermat's two-square theorem is without doubt a remarkable result. Many proofs of the theorem have been provided; see, for instance, \cite{Zag90,Her1848,Ser1848,CELV99,Bri72}. It is also true that most proofs have much in common, for instance, Smith's proof is very similar to Hermite's \cite{Her1848}, Serret's \cite{Ser1848}, and Brillhart's \cite{Bri72}. Let us recall here, for convenience, suitable definitions of Euclidean rings and continuant. \begin{definition}[{\cite[Section~2.15]{Jacobson}}] \emph{Euclidean rings} are rings $R$ with no zero divisors which are endowed with a Euclidean function $\nm$ from $R$ to the nonnegative integers such that for all $\tau_1, \tau_2\in R$ with $\tau_1\ne 0$, there exist $q, r \in R$ such that $\tau_2 = q\tau_1 + r$ and $\nm(r) < \nm(\tau_1)$. \end{definition} Well-known examples of Euclidean rings include the integers with $\nm(u)=|u|$, and the polynomials over a field with $\nm(0)=0$ and $\nm(P)=2^{\mathrm{degree}(P)}$. In this paper we only consider Euclidean commutative rings. \begin{definition}[Continuants in arbitrary rings, {\cite[Sec.~6.7]{GKP}}]\label{def:continuant} Let $Q$ be a sequence of elements $q_1,q_2,\ldots,q_n$ of a ring $R$. We associate with $Q$ an element $[Q]$ of $R$ via the following recurrence formula \begin{align*} [\,]&=1, [q_1]=q_1, [q_1,q_2]=q_1q_2+1, \text{~and}\\ [q_1,q_2,\ldots,q_n]&=[q_1,\ldots,q_{n-1}]q_n+[q_1,\ldots,q_{n-2}], \text{~ if~} n\ge 3. \end{align*} The value $[Q]$ is called the \emph{continuant} of the sequence $Q$. \end{definition} Properties of continuants in commutative rings are given by Graham et al.~\cite[Sec.~6.7]{GKP}. \begin{lemma}[Carroll's identity, {\cite{Dod1866}}] \label{lemm:LC_Ident} Let $C$ be an $n\times n$ matrix in a commutative ring. Let $C_{i_1,\ldots, i_s;j_1,\ldots, j_s}$ denote the matrix obtained from $C$ by omitting the rows $i_1,\ldots, i_s$ and the columns $j_1,\ldots, j_s$. Then \[ \det(C)\det(C_{i,j;i,j})=\det(C_{i;i})\det(C_{j;j})-\det(C_{i;j})\det(C_{j;i}) \] where $\det(M)$ denotes the determinant of a matrix $M$, and the determinant of the $0\times0$ matrix is 1 for convenience. \end{lemma} The use of Carroll's identity provides two more properties. \begin{mylist} \item\label{lewiscarroll} $[q_1,q_2,\ldots, q_{n}][q_2,\ldots , q_{n-1}]= [q_1,\ldots,q_{n-1}][q_2,\ldots , q_n]+(-1)^{n}$ ($n\ge 2$). \item\label{PPreverse} $[q_1,q_2,\ldots,q_n]=[q_n,\ldots,q_2,q_1]$. \end{mylist} Given two elements $m_1$ and $m_2$ in a Euclidean ring $R$, the Euclidean algorithm outputs a sequence $(q_1,q_2,\ldots,q_n)$ of quotients and a greatest common divisor (gcd) $h$ of $m_1$ and $m_2$. A sequence of quotients given by the Euclidean algorithm is called a \emph{continuant representation} of $m_1$ and $m_2$ as we have the equalities $m_1=[q_1,q_2,\ldots,q_n]h$ and $m_2=[q_2,\ldots,q_n] h$, unless $m_2=0$. A representation of an element $m$ by the form $Q(x,y)=\alpha x^2+ \gamma xy+ \beta y^2$ is called {\it proper} if $\gcd(x,y)=1$. In this paper we are mostly concerned with proper representations. For us the quadratic forms $f(x,y)=ax^2+bxy+c y^2$ and $g(x,y)=Ax^2+Bxy+Cy^2$ are {\it equivalent} if there is a $2\times 2$ matrix $M=(a_{ij})$ with determinant 1 such that $g(x,y)=f(a_{11}x+a_{12}y, a_{21}x+a_{22}y)$. For equivalent forms $f$ and $g$ it follows that an element $m$ is (properly) represented by $f$ iff $m$ is (properly) represented by $g$. \subsection{Our work} This paper can be considered as a follow-up to our earlier paper \cite{DP11}. In that paper we studied the use of continuants in some integer representations (e.g., sums of four squares) and sums of two squares in rings of polynomials over fields of characteristic different from 2. Here we deal with the following problems. We let $u$ denote a unit in a ring; the ring under consideration will become clear from the context. \begin{problem}[From $x^2+gxy+hy^2$ to $z^2+gz+h$] If $m=u(x^2+gxy+hy^2)$ and $x,y$ are coprime, can we find $z$ such that $z^2+gz+h$ is a multiple of $m$ using ``continuants''? \end{problem} \begin{problem}[From $z^2+gz+h$ to $x^2+gxy+hy^2$] \label{prob:2}If $m$ divides $z^2+gz+h$, can we find $x,y$ such that $m=u(x^2+gxy+hy^2)$ using ``continuants''? \end{problem} We emphasize that, while Problem \ref{prob:2} has a positive answer in some situations (see below), in general it has a negative answer. More information is given in Subsection \ref{subsec:Q(z,1)ToQ(x,y)}. In this paper we use a generalization of continuants \cite{She72} to produce proper representations $Q(x,y)=x^2+ g xy+ h y^2$, up to multiplication by a unit $u$, of an element $m$ in some Euclidean rings. This generalization allows us to present the following new deterministic algorithms. \begin{enumerate} \item Algorithm \ref{DivAlg_FromQ(x,y)ToQ(z,1)}: for every $m$ in a commutative Euclidean ring, it finds a solution $z_0$ of $Q(z,1)\equiv0\pmod{m}$, given a proper representation $uQ(x,y)$ of $m$. \item Algorithm \ref{PolyDivAlg}: for every polynomial $m\in \mathbb{F}[X]$, where $\mathbb{F}$ is a field of odd characteristic, it finds a proper representation $u(x^2+hy^2)$ of $m$, given a solution $z_0$ of $Q(z,1)\equiv0\pmod{m}$. Here $h$ is a polynomial in $\mathbb{F}[X]$ of degree at most one. \item Algorithm \ref{DivAlgI}: for all negative fundamental discriminants of class number one, it finds a representation $uQ(x,y)$ of an integer $m$, given a solution $z_0$ of $Q(z,1)\equiv0\pmod{m}$. \end{enumerate} A simple modification of Algorithm \ref{DivAlgI} produces representations $uQ(x,y)$ for some positive discriminants of class number one, including all the determinants studied by Matthews \cite{Mat02}. This modification is discussed in Section \ref{sec:final}. Recall the {\it class number} of a determinant $\Delta\in \mathbb Z$ \cite[p.~7]{bue89} gives the number of equivalence classes of integral binary quadratic forms with discriminant $\Delta$. As is customary, we ignore negative definite forms; see \cite[p.~7]{bue89} and \cite[p.~152]{NivZucMon91}. When trying to extend Smith's approach to other Euclidean rings $R$, one is confronted by the lack of uniqueness of the continuant representation. The uniqueness of the continuant representation boils down to the uniqueness of the quotients and the remainders in the division algorithm. This uniqueness is achieved only when $R$ is a field or $R = \F[X]$, the polynomial algebra over a field $\F$ \cite{Jod67} (considering the degree as the Euclidean function). \subsection{A short review of related results} Let $p$ be a prime number of the form $4k+1$. In his proof of Fermat's two-square theorem, Smith \cite{CELV99} first shows the existence of a palindromic sequence $Q=(q_1,\ldots , q_s,q_s,\ldots ,q_1)$ such that $p=[Q]$ through an elegant parity argument. This sequence then allows him to derive a solution for $z^2+1\equiv0 \pmod{p}$ and a representation $x^2+y^2$ for $p$. With regard to the question of finding square roots modulo a prime $p$, Schoof \cite{Sch1985} presented a deterministic algorithm and Wagon \cite{Wag90} wrote an interesting article on the topic. Brillhart's refinement \cite{Bri72} of Smith's construction took full advantage of the palindromic structure of the sequence $(q_1,\dots,q_{s-1},q_s,q_s,q_{s-1},\dots,q_1)$ given by the Euclidean algorithm on $p$ and $z_0$, a solution of $z^2+1\equiv0\pmod{p}$. He noted that the Euclidean algorithm gives the remainders \begin{align*} r_i&=[q_{i+2},\dots,q_{s-1},q_s,q_s,q_{s-1},\dots,q_1] \text{ ($i=1,\ldots,2s-1$), and}\\ r_{2s}&=0. \end{align*} So, by virtue of Smith's construction, rather than computing the whole sequence, we only need to obtain $x=r_{s-1}=[q_s,q_{s-1},\ldots,q_1]$ and $y=r_s=[q_{s-1},\ldots,q_1]$. In this case, we have $y1$ over any such field? We first note that the property ``$m | z^2+h \Rightarrow \exists x,y,u \;(m= u(x^2+y^2h) \land u \text{~unit})$'' \noindent does not hold in general for $h$ reducible. Consider $h=X^3+X^2+X$ in polynomials over a field of characteristic $\ne 3$. Then, $X^2+X+1$ divides $0^2+1^2h$ and is certainly not of the form $x^2+y^2h$. Indeed, here we have either $y^2h$ null or of odd degree $\ge 3$. In the former case, it follows that $x^2+y^2h =x^2$ is a square, but $X^2+X+1$ is not a square in a field of characteristic $\ne 3$, while in the latter case $x^2+y^2h$ has degree $\ge 3>\text{degree}(X^2+X+1)$. What about irreducible $h$ with $\deg(h)\ge2$? Already for degree 2 the property does not hold in general. Indeed, consider in $\Q[X]$ the polynomials $h=X^2-2$, $z=X^2$ and $m=X-1$. Observe that $X-1$ divides $X^4+X^2-2$ and that $X-1$ is not of the form $u(x^2+y^2(X^2-2))$. To see this, note that the degree of $x ^2+y^2(X^2-2)$ is either $2\deg(x)$ or $2+2\deg(y)$. \newpage \begin{algorithm}[H] \SetKwData{Left}{left}\SetKwData{This}{this}\SetKwData{Up}{up} \SetKwInOut{Input}{input}\SetKwInOut{Output}{output} \SetKw{Init}{initialisation:} \SetKw{Ass}{assumptions:} \Input{A field $\F$ with characteristic different from 2.\\The ring $R=\F[X]$ of polynomials over $\F$.\\A square-free element $h\in \F$ or a polynomial $h\in R$ of degree 1.\\A polynomial $m$ with $\nm(1)< \nm(m)$.\\A solution $z_0$ of $Q(z,1)\equiv0\pmod{m}$ with $\nm(1)< \nm(z_0)<\nm(m_0)$.} \Output{A unit $u$ and a proper representation $uQ(x,y)$ of $m$.} \Ass{} The polynomials $z$ and $h$ are coprime. \tcc{Divide $m$ by $z$ using the Euclidean algorithm until we find a remainder $r_{s-1}$ with degree at most $\deg(m)/2$.} $s\leftarrow1$\; $m_0\leftarrow m$\; $r_0\leftarrow z$\; \Repeat{$\deg(r_{s-1})\le \deg(m)/2$} { $s\leftarrow s+1$\; $m_{s-1}\leftarrow r_{s-2}$\; find $k_{s-1}, r_{s-1}\in R$ such that $m_{s-2} = k_{s-1} m_{s-1} +r_{s-1}$ with $\nm(r_{s-1})<\nm(m_{s-1})$\; } \tcc{Here we have a sequence $(k_1,\ldots,k_{s-1})$ of quotients.} $x_{\rm temp}\leftarrow r_{s-1}$\; $y_{\rm temp}\leftarrow [k_{1},\ldots,k_{s-1}]$\; \tcc{We obtain a unit $u$.} \lIf{$s$ is odd} {Solve $m=u(x_{\rm temp}^2+hy_{\rm temp}^2)$ for $u$} \lElse{Solve $um=x_{\rm temp}^2+hy_{\rm temp}^2$ for $u$} \tcc{We obtain $(x,y)$ so that $m=(x^2+hy^2)u$.} \lIf{$s$ is odd}{$x\leftarrow x_{\rm temp}$} \lElse{$x\leftarrow u^{-1}x_{\rm temp}$}\; \lIf{$s$ is odd}{$y\leftarrow y_{\rm temp}$} \lElse{$y\leftarrow u^{-1}y_{\rm temp}$}\; \Return $(x,y,u)$ \caption{Deterministic algorithm for constructing a proper representation $uQ(x,y)=u(x^2+hy^2)$ of an element $m$.} \label{PolyDivAlg} \end{algorithm} For specific fields we find situations where the property holds. Take, for instance, the field $\mathbb{R}$ of reals, $h=X^2+1$ and every real polynomial $m$ taking only positive values over $\mathbb{R}$. It is known that any polynomial $m$ over $\mathbb{R}$, which takes at every point of $\mathbb{R}$ a positive value, has the form $\prod(a_k X^2+2b_kX+c_k)$, where $a_k,b_k,c_k\in \mathbb{R}$ and $b_k^2-a_kc_k<0$. Thus, it suffices to consider the case of $m=aX^2+2bX+c$ with $a>0,c>0$ and $b^2-ac<0$. If $b=0$, then \[m=\begin{cases}(\sqrt{a-c}X)^2+\sqrt c ^2(X^2+1),& \textrm{if $a\ge c$;}\\ \sqrt{c-a}^2+\sqrt a ^2(X^2+1),& \textrm{if $a\le c$.} \end{cases}\] If instead $b\ne0$, then, setting $d=\sqrt{(a+c-\sqrt{(a-c)^2+4b^2})/2}$, we obtain $m=(\sqrt{a-d^2}X+e \sqrt{c-d^2})^2+d^2(X^2+1)$, where $e=\pm 1$ is the sign of $b$. For $h=-X^2-1$ and every real polynomial $m$ over $\mathbb{R}$, we have another situation where the property holds. Observe that the form $Q(x,y)=x'^2+(-X^2-1)y'^2$ is equivalent to the form $Q(x,y)=x^2+2Xxy-y^2$ (by Remark \ref{rem:fChar2}). Any polynomial of degree 1 is an associate of some $a^2-b^2+2abX$ with units $a$ and $b$. We now take care of polynomials $m=k(X^2+2vX+w)$ with no real zeros and $k,v,w\in \mathbb{R}$. Here note that $v^21$. Consequently, each real polynomial is an associate of some polynomial $x^2+2xyX-y^2=(x+Xy)^2+(-1-X^2)y^2$. Using the automorphisms of $ \mathbb{R}[x]$, both previous approaches can easily be applied to any real polynomial of degree 2 with no real roots. \section{From $Q(z,1)$ to $Q(x,y)$: integral quadratic forms}\label{quadform} In this section, given integers $m,z$ such $m | Q(z,1)$, we provide an algorithm that proves the existence of representations $Q(x,y)u$ of $m$ for a unit $u$ and certain forms $Q$. Since 2 is not invertible in $\Z$, we have to consider the rings of algebraic integers of $\Q[\sqrt{-h}]$, that is, the rings $\Z[\sqrt{-h}]$ for forms $x^2+h y^2$ with $|h|$ square-free and $h\not\equiv -1\pmod 4$, and the ring $\Z[(1+\sqrt{1-4h})/2]$ for forms $x^2+xy+ h y^2$ with $|1-4h|$ square-free; see \cite[p.~35]{Sam70}. What are those rings of integers for which the following property holds? ``$m | Q(z,1) \Rightarrow \exists x,y,u \;(m= uQ(x,y) \land u \text{~unit})$.'' The answer is given by the rings whose corresponding forms have class number $H(\Delta)$ equal to one \cite[pp.~6--7, pp.~81--84]{bue89}. Here $\Delta$ denotes the form discriminant. In the case of $\Delta<0$, all the principal rings satisfy the property; these values of $\Delta$ are the following: $-3,-4,-7,-8,-11,-19,-43,-67,-163$; see \cite[A014602]{OEIS} and \cite[pp.~81]{bue89}. For these negative fundamental discriminants, generalized continuants provide a constructive proof of the property. It is also known that there are four negative non-fundamental discriminants of class number one, namely $-12, -16, -27$ and $-28$; see \cite[pp.~81]{bue89} and \cite[Thm.~7.30]{Cox89}. For the case of $\Delta>0$, while we do not even know whether the list of such determinants is infinite, it is conjectured this is the case; see \cite[pp.~81--82]{bue89} and \cite[A003655]{OEIS}. Recall the class number $H(\Delta)$ \cite[p.~7]{bue89} gives the number of equivalence classes of integral binary quadratic forms with discriminant $\Delta \in \mathbb{Z}$. Next we recall the following well-known result of Rabinowitsch \cite{Rab1913}. \begin{theorem}[{\cite{Rab1913}}]\label{thm:Rabi} For a fundamental discriminant $\Delta=1-4\kappa\le-7$, it follows that $H(\Delta)=1$ iff $x^2+x+\kappa$ attains only prime values for $-(\kappa-1)\le x\le\kappa-2$. \end{theorem} Below we present a division algorithm (Algorithm \ref{DivAlgI}) which, for any negative fundamental discriminant of class number one, gives a proper representation $Q(x,y)$ of $m$, provided that $m$ divides $Q(z,1)$. Since $m=1$ trivially admits the proper representation $(1,0)$ of $Q(x,y)=x^2+gxy+hy^2$, Algorithm \ref{DivAlgI} assumes $|m|>1$. \bigskip \begin{algorithm}[H] \SetKwData{Left}{left}\SetKwData{This}{this}\SetKwData{Up}{up} \SetKwFunction{Union}{Union}\SetKwFunction{FindCompress}{FindCompress} \SetKwInOut{Input}{input}\SetKwInOut{Output}{output} \SetKw{Init}{initialisation:} \SetKw{Ass}{assumptions:} %\LinesNumbered \Input{A negative fundamental discriminant $\Delta$ of class number one.\\An integer $m_0$ with $1< |m_0|$.\\ A solution $z_0$ of $Q(z,1)\equiv0\pmod{m_0}$ with $1< |z_0|<|m_0|$.} \Output{A proper representation $Q(x,y)$ of $m_0/u$ ($u=\pm1$).} $s\leftarrow0$\; \While{$|m_{s}|\ne1$} { $s\leftarrow s+1$\; 4 $m_s\leftarrow Q(z_{s-1},1)/m_{s-1}$\; 5 find $k_s, z_s\in R$ such that $z_{s-1} = k_sm_s +z_s$ with $|z_s|<|m_s|$\; \tcc{We prioritize non-null quotients $k_s$.} } \tcc{Here we have the unit $m_s$ and sequence $(k_1,\ldots,k_s)$.} \tcc{To keep consistency with the previous sections of the paper we reverse the subscripts of the quotients} $(q_1,q_{2},\ldots,q_s)\leftarrow(k_s,k_{s-1},\ldots,k_1)$\; $x\leftarrow[m_sq_1,m_s^{-1}q_{2},\ldots,m_s^{(-1)^{s-2}}q_{s-1},m_s^{(-1)^{s-1}}q_s]$\; $y\leftarrow[m_s^{-1}q_{2},\ldots,m_s^{(-1)^{s-2}}q_{s-1},m_s^{(-1)^{s-1}}q_s]$\; \Return $(x,y)$ \caption{Deterministic algorithm for constructing a proper representation $Q(x,y)=x^2+gxy+hy^2$ of an element $m$.} \label{DivAlgI} \end{algorithm} \bigskip \begin{remark}[Algorithm \ref{DivAlgI}: Prioritizing non-null quotients] In the Euclidean division of $z_{s-1}$ by $m_s$ with $|z_{s-1}|<|m_s|$, a valid quotient $k_s$ could be $\pm1$ or 0. By ``prioritizing non-null quotients $k_s$'' we mean that, in this situation, we always choose the $k_s$ which is not null. \end{remark} \begin{proposition}[Algorithm \ref{DivAlgI} Correctness]\label{correctness} Let $h,g,\Delta,u,m_0,z_0$, and $m_i,z_i$, $q_i$ ($i=1,\ldots,s$) be as in Algorithm \ref{DivAlgI}. Then, Algorithm \ref{DivAlgI} produces a proper representation $Q(x,y)$ of $m_0/u$. \end{proposition} \begin{proof} In the ring $\Z[(1+\sqrt{1-4h})/2]$ we consider the form $Q(x,y)=x^2+xy+hy^2$, while in the ring $\Z[\sqrt{-h}]$ we consider the form $Q(x,y)=x^2+hy^2$. As the proof method is the same in both cases, we restrict ourselves to the former case, that is, to the case of $\Delta=-3$, $-7$, $-11$, $-19$, $-43$, $-67$, $-163$ and $h=1$, $2$, $3$, 5, 11, 17, 41. \bigskip \par\noindent{\bf Claim 1. Algorithm \ref{DivAlgI} terminates with the last $m_j$ being $\pm1$.} As a general approach we show that the sequence $|m_i|$ ($i=0,\ldots, s-1$) is decreasing, that is, $|m_{i+1}|<|m_i|$ . Once this decreasing character fails, we show that the algorithm stops with the last $m_i$ being a unit. Recall we have $|m_i|\ge|z_i|+1$ for $i=1,\ldots, s-1$. \bigskip \noindent {\bf Case $(\Delta,h)=(-3,1),(-7,2)$:} $|m_i||m_i|\ge z_i^2+2|z_i|+1> |z^2_i+z_i+h|=|m_i||m_{i+1}|$, and thus $|m_i|>|m_{i+1}|$ for $|z_i|>1$. Assume that for a certain $z_i$, say $z_{s-1}$, $|z_{s-1}|=1$. If $h=1$ then Line 4 ($z_{s-1}^2+z_{s-1}+1=m_{s-1}m_{s}$) gives that $|m_s|=1$, as desired. In the case of $h=2$ and $z_{s-1}=-1$, we have that $z_{s-1}^2+z_{s-1}+2=2$ and $|m_s|=1$. If $h=2$ and $z_{s-1}=1$, we have from Line 4 again that $1+1+2=m_{s-1}m_s$. Then we deduce that either $|m_{s-1}|=2$ and $|m_{s}|=2$ or $|m_{s-1}|=4$ and $|m_{s}|=1$. The configuration $|m_{s-1}|=4$ and $|m_{s}|=1$ will cause the algorithm to stop with $m_s$ being a unit. In the case of $|m_{s-1}|=2$ and $|m_{s}|=2$, in Line 5 we have $z_{s-1}=k_{s}m_{s}+z_{s}$ and the algorithm would give $z_{s}=-1$, which implies $|m_{s+1}|=1$. Consequently, in these two cases Algorithm \ref{DivAlgI} terminates with the last $m_j$ being a unit. \bigskip \noindent {\bf Case $(\Delta,h)=(-11,3),(-19,5),(-43,11),(-67,17),(-163,41)$:} Reasoning as in the previous case, we have that $|m_i||m_i|\ge z_i^2+2|z_i|+1>|z^2_i+z_i+h|=|m_i||m_{i+1}|$, unless $|z_i|\le h-1$. Suppose $|z_{s-1}|\le h-1$. Note that $|m_{s-1}|>1$, otherwise the algorithm would have stopped. By Theorem \ref{thm:Rabi}, the polynomial $Q(z_{s-1},1)=z_{s-1}^2+z_{s-1}+h$ is prime for $-(h-1)\le z_{s-1}\le h-2$. Thus, we have that $|m_{s-1}|>|m_s|$ with $|m_s|=1$. If instead $z_{s-1}= h-1$, then $|m_{s-1}|=|m_{s}|=h$, which implies that $z_{s}=-1$ and $|m_{s+1}|=1$, causing the algorithm to stop. \bigskip \par\noindent{\bf Claim 2. Algorithm \ref{DivAlgI} produces a proper representation $Q(x,y)$.} It only remains to prove that $x$ and $y$ have the required form. First we reverse the subscripts of the quotients, that is, the quotient $k_s$ becomes $q_1$, the quotient $k_{s-1}$ becomes $q_2$, and so on. Thus, after the ``while'' loop we have that $z_{s-1}=m_sq_1$, where $m_s$ is a unit. We know that $Q(m_sq_1,1)=m_{s-1}m_s$. Consequently, $m_{s-1}m_s=[m_sq_1+1,m_sq_1;h,1]$. Then, by Property P--\ref{reverbis} and Property P--\ref{cuttingbis} it follows $$z_{s-2}=[m_s^{-1}q_{2},m_sq_{1}+1,m_sq_1;h,2].$$ Then, from the equation $m_{s-2}m_{s-1}=Q(z_{s-2},1)$ we obtain \[m_{s-2}m_s^{-1}=[m_s^{-1}q_{2},m_sq_{1}+1,m_sq_1,m_s^{-1}q_{2};h,2]=Q([m_sq_1,m_s^{-1}q_2],[m_s^{-1}q_2]).\] Continuing this process, we have \begin{align*} z_{0}&=[m_s^{(-1)^{s-1}}q_s,K,m_sq_1+1,m_sq_1,K^{-1};h,s],\\ m_0m_s^{(-1)^{s+1}}&=[m_s^{(-1)^{s-1}}q_s,K,m_sq_1+1,m_sq_1,K^{-1},m_s^{(-1)^{s-1}}q_s;h,s], \end{align*} where $K=m_s^{(-1)^{s-2}}q_{s-1},\ldots,m_s^{-1}q_2$ and $K^{-1}=m_s^{-1}q_2,\ldots,m_s^{(-1)^{s-2}}q_{s-1}$. Consequently, from Property P--\ref{zigzagbis} it follows that $m_0m_s^{(-1)^{s+1}}=Q(x,y)$, where \begin{align*} x=&[m_sq_1,m_s^{-1}q_{2},\ldots,m_s^{(-1)^{s-2}}q_{s-1},m_s^{(-1)^{s-1}}q_s],\\ y=&[m_s^{-1}q_{2},\ldots,m_s^{(-1)^{s-2}}q_{s-1},m_s^{(-1)^{s-1}}q_s]. \end{align*} Using Property P--\ref{reverbis} we can write $m_0m_s^{(-1)^{s+1}}$ as follows; see Equation (\ref{eq:det}). \begin{align*} m_0m_s^{(-1)^{s+1}}&=[m_s^{(-1)^{s-1}}q_s,K,m_sq_1,m_sq_1+1,K^{-1},m_s^{(-1)^{s-1}}q_s;h,s]. \end{align*} \begin{remark} \label{class1} Note that we require all the numbers $m_i$ to be represented by the form $Q(x',y')$. This is assured by the fact that $Q$ has class number one. \end{remark} As a result, each root $z_0$ of $Q(z,1)\equiv0\pmod{m_0}$ with $ 1< |z_0|< |m_0|$ gives rise to a proper representation of $m_0m_s^{(-1)^{s+1}}$ as $Q(x,y)$. The coprimality of $x$ and $y$ follows from Property P--\ref{lewiscarroll}. \end{proof} Let us see an example. For the ring $\Z[(1+\sqrt{-19})/2]$ the form is $x^2+xy+5y^2$. Take $m_0=251$ and $z_0=52$. Then $251\cdot 11=52^2+52+5$, and the division gives \begin{align*} 251\cdot 11&=52^2+52+5 &\rightarrow& & 52&=4\cdot 11 +8,\\ 11\cdot 7&=8^2+8+5 &\rightarrow& & 8&=1\cdot 7 +1,\\ 7\cdot 1 &= 1^2+1+5 &\rightarrow& & 1&=1\cdot 1. \end{align*} Thus, we have $m_3=1$ and $(q_3,q_2,q_1)=(4,1,1)$. From this we recover the continuant representation of $m_0=251$ \[ 251=\det\begin{bmatrix} 4&1&&&&\\-1&1&1&&&\\&-1&1&1&&\\&&-5&1+1&1&\\&&&-1&1&1\\&&&&-1&4 \end{bmatrix}. \] Consequently, we conclude that $251=x^2+xy+5y^2$ with $x=[1,1,4]=9$ and $y=[1,4]=5$. \section{Final remarks} \label{sec:final} In Algorithm \ref{DivAlgI} we require $m_s$ to be $\pm1$. However, this may be an unnecessarily strong restriction. If in Algorithm \ref{DivAlgI} we replace the condition of the while loop by $z_s\ne0$, then this modified Algorithm \ref{DivAlgI} may also end with the last $m_j$, say $m_s$, being different from $\pm1$. Further, if such $m_s$ admits a representation as $Q(x,y)$, then the formula \begin{align} (x^2 + gxy + hy^2)(z^2 + gzw +hw^2)=&{}(xz-hyw)^2+g(xz-hyw)\times\label{eq:Sq}\\ &{}\times(xw+yz+gyw)+\nonumber\\ &{}+h(xw+yz+gyw)^2\nonumber \end{align} will provide a desired representation of $m=m_0$ for a larger number of forms $Q(x,y)$. First recall that in Algorithm \ref{DivAlgI} \begin{align*} m_0m_s^{(-1)^{s+1}}=&{}x^2+gxy+hy^2, \end{align*} where \begin{align*} x=&[m_sq_1,m_s^{-1}q_{2},\ldots,m_s^{(-1)^{s-2}}q_{s-1},m_s^{(-1)^{s-1}}q_s],\\ y=&[m_s^{-1}q_{2},\ldots,m_s^{(-1)^{s-2}}q_{s-1},m_s^{(-1)^{s-1}}q_s]. \end{align*} Then, to recover the representation of $m_0$ (associated with $z_0$) we just need to express $m_s$ or $-m_s$ as $Q(x,y)$. This simple modification of Algorithm \ref{DivAlgI} will provide proper representations $Q(x,y)$ of $\pm m$ for some forms $Q$ with discriminant $\Delta>0$ and $H(\Delta)=1$; see \cite{Disc_Real_Quad_Field_NarrowClassNo1}. The following two examples illustrate this idea. Recall that the condition of the ``while'' loop is now $z_s\ne0$. For the ring $\Z[(1+\sqrt{17})/2]$ the form is $x^2+xy-4y^2$. Take $m_0=3064$ and $z_0=564$. Noticing $3064\cdot 104=564^2+564-4$, the division gives \begin{align*} 3064\cdot 104&=564^2+564-4 &\rightarrow& & 564&=5\cdot 104 +44,\\ 104\cdot 19&=44^2+44-4 &\rightarrow& & 44&=2\cdot 19 +6,\\ 19\cdot 2 &= 6^2+6-4 &\rightarrow& & 6&=3\cdot 2. \end{align*} Thus, we have $s=3$, $m_3=2$ and $(q_3,q_2,q_1)=(5,2,3)$. From this we recover the continuant representation of $m_0\cdot 2=6128$ \[ 6128=\det\begin{bmatrix} 10&1&&&&\\-1&1&1&&&\\&-1&6&1&&\\&&4&6+1&1&\\&&&-1&1&1\\&&&&-1&10 \end{bmatrix}. \] The representation $Q(x,y)$ of 6128 is given by $x=[2\cdot3,2^{-1}\cdot2,2\cdot5]=76$ and $y=[2^{-1}\cdot2,2\cdot5]=11$. Note that $2=2^2+2\cdot1-4\cdot1^2$. Using Equation (\ref{eq:Sq}) in the form $3064\cdot (2^2+2\cdot 1-4\cdot 1)=76^2+76\cdot 11-4\cdot 11^2$, we conclude that $3064=92^2+92\cdot (-27)-4(-27)^2$. For the ring $\mathbb{Z}[\sqrt{6}]$ the form is $Q(x,y)=x^2-6y^2$. Take $m_0=37410$ and $z_0=1326$. Noticing $37410\cdot 47=1326^2-6$, the division gives \begin{align*} 37410\cdot 47&=1326^2-6 &\rightarrow& & 1326&=28\cdot (47) +10,\\ 47\cdot 2&=10^2-6 &\rightarrow& & 10&=5\cdot 2. \end{align*} Thus, we have $s=2$, $m_2=2$ and $(q_2,q_1)=(28,5)$. The representation $Q(x,y)$ of $37410\cdot 2^{-1}$ is $x=[2\cdot 5, 2^{-1}\cdot 28]=141$ and $y=[2^{-1}\cdot 28]=14$. Note that $-2=2^2-6\cdot1^2$. Using Equation (\ref{eq:Sq}) in the form $(141^2-6\cdot 14^2)(2^2-6\cdot1^2)=-37410$, we have that $-37410=366^2-6\times 169^2$. Below we present some of the forms $Q(x,y)$ for which the proposed modification of Algorithm \ref{DivAlgI} will give the representation of $m_0$ associated with the given $z_0$. The forms are given in the format $(Q,\{\textrm{list of possible values of $m_s$}\})$. Note that $m_s$ is a divisor of $h$ and that, for every case, either $m_s$ or $-m_s$ is represented by the form. \bigskip $\begin{array}{ll} (x^2-2y^2,\{\pm1,\pm2\})&(x^2+xy-4y^2,\{\pm1,\pm2,\pm4\})\\ (x^2-3y^2,\{\pm1,\pm3\}) &(x^2+xy-7y^2,\{\pm1,\pm7\}) \\ (x^2-6y^2,\{\pm1,\pm2,\pm3,\pm6\})&(x^2+xy-9y^2,\{\pm1,\pm3,\pm9\})\\ (x^2-7y^2,\{\pm1,\pm7\})&(x^2+xy-10y^2,\{\pm1,\pm2,\pm5,\pm10\})\\ (x^2+xy-y^2,\{\pm1\})&(x^2+xy-13y^2,\{\pm1,\pm13\})\\ (x^2+xy-3y^2,\{\pm1\})&(x^2+xy-15y^2,\{\pm1,\pm3,\pm5,\pm15\}) \end{array}$ \bigskip Recall that Matthews \cite{Mat02} provided representations of certain integers as $x^2-hy^2$, where $h = 2, 3, 5, 6, 7$. From the previous remarks it follows that the modified Algorithm \ref{DivAlgI} covers all the cases studied by Matthews \cite{Mat02}. Observe that the form $x^2-5y^2$, studied by Matthews \cite{Mat02} and associated with the non-principal ring $\Z[\sqrt{5}]$, has been superseded by the form $x^2+xy-y^2$ associated with the integral closure of $\Z[\sqrt{5}]$, that is, $\Z[(1+\sqrt{5})/2]$. It is known that the forms $x^2+xy-y^2$ and $x^2-5y^2$ represent the same integers. Indeed, if an integer $m$ is represented by $x^2-5y^2$ then the identity $x^2-5y^2=(x-y)^2+(x-y)(2y)-(2y)^2$ gives a representation, not necessarily proper, of $m$ by the form $x'^2+x'y'-y'^2$. If instead an integer $m$ is represented by the form $x^2+xy-y^2$, then, depending on the parity of $x$ and $y$, one of the identities \begin{align*} x^2+xy-y^2&=\left(x+y+\frac{x+2y}{2}\right)^2-5\left(\frac{x+2y}{2}\right)^2,\\ &=\left(2x-y+\frac{-x+y}{2}\right)^2-5\left(\frac{-x+y}{2}\right)^2,\\ &=\left(x+\frac{y}{2}\right)^2-5\left(\frac{y}{2}\right)^2 \end{align*} gives a representation by the form $x'^2-5y'^2$. Unsatisfactorily, our algorithm does not terminate for every $\Delta>0$ with $H(\Delta)=1$. For instance, take $\Delta=73$, $m_0=267$ and $z_0=23$. The corresponding quadratic form is $x^2+xy-18y^2$, and we have that $267=(-69)^2+(-69)\cdot14-18\cdot14^2$ and $267|23^2 + 23 - 18$. The approach presented in the paper is likely to work for other representations if new generalized continuants are defined. {\it Mathematica$^\circledR$}\cite{Wol99} implementations of most of the algorithms presented in the paper and other related algorithms are available at \url{http://guillermo.com.au/wiki/List_of_Publications} \noindent under the name of this paper. \section{Acknowledgments} The authors thank the referee for his/her careful and thoughtful review. The paper's presentation has certainly benefited from his/her comments. \appendix \section{Proofs of some of the generalized continuant properties} \label{sec:proofsCont} \begin{proposition}[Property P--\ref{cuttingbis}]\label{prop:P3} For integers $n,h,s$ such that $1\le s1$ and $s=n-1$, Property P--\ref{cuttingbis} follows from the definition of generalized continuants. Consider any $h>1$ and $s=n-2$. Then, from Definition \ref{def:gCont} it follows that \begin{align*} [q_1,\ldots q_n;h,n-2]&=[q_1,\ldots, q_{n-1};h,n-2]q_n+[q_1,\ldots, q_{n-2};h,n-2],\\ &=([q_1,\ldots,q_{n-3}]h+[q_1,\ldots, q_{n-2}][q_{n-1}])q_n+[q_1,\ldots, q_{n-2}],\\ &=[q_1,\ldots,q_{n-3}]hq_n+[q_1,\ldots, q_{n-2}]([q_{n-1}])q_n+1),\\ &=[q_1,\ldots,q_{n-3}]hq_n+[q_1,\ldots, q_{n-2}][q_{n-1},q_n]. \end{align*} Finally, fix $h>1$ and $s