\documentclass[12pt,reqno]{article} \usepackage[usenames]{color} \usepackage{amssymb} \usepackage{graphicx} \usepackage{amscd} \usepackage[colorlinks=true, linkcolor=webgreen, filecolor=webbrown, citecolor=webgreen]{hyperref} \definecolor{webgreen}{rgb}{0,.5,0} \definecolor{webbrown}{rgb}{.6,0,0} \usepackage{color} \usepackage{fullpage} \usepackage{float} \usepackage{psfig} \usepackage{graphics,amsmath,amssymb} \usepackage{amsthm} \usepackage{amsfonts} \usepackage{latexsym} \usepackage{epsf} \setlength{\textwidth}{6.5in} \setlength{\oddsidemargin}{.1in} \setlength{\evensidemargin}{.1in} \setlength{\topmargin}{-.1in} \setlength{\textheight}{8.4in} \newcommand{\seqnum}[1]{\href{http://oeis.org/#1}{\underline{#1}}} \begin{document} \begin{center} \epsfxsize=4in \leavevmode\epsffile{logo129.eps} \end{center} \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{corollary}[theorem]{Corollary} \newtheorem{lemma}[theorem]{Lemma} \newtheorem{proposition}[theorem]{Proposition} \theoremstyle{definition} \newtheorem{definition}[theorem]{Definition} \newtheorem{example}[theorem]{Example} \newtheorem{conjecture}[theorem]{Conjecture} \theoremstyle{remark} \newtheorem{remark}[theorem]{Remark} \begin{center} \vskip 1cm{\LARGE\bf Generalized Anti-Waring Numbers } \vskip 1cm \large Chris Fuller and Robert H. Nichols, Jr.\\ Labry School of Science, Technology, and Business\\ Cumberland University\\ 1 Cumberland Square\\ Lebanon, TN 37087\\ USA \\ \href{mailto:cfuller@cumberland.edu}{\tt cfuller@cumberland.edu}\\ \href{mailto:rnichols@cumberland.edu}{\tt rnichols@cumberland.edu} \end{center} \vskip .2 in \begin{abstract} The anti-Waring problem considers the smallest positive integer such that it and every subsequent integer can be expressed as the sum of the $k^{\rm th}$ powers of $r$ or more distinct natural numbers. We give a generalization that allows elements from any nondecreasing sequence, rather than only the natural numbers. This generalization is an extension of the anti-Waring problem, as well as the idea of complete sequences. We present new anti-Waring and generalized anti-Waring numbers, as well as a result to verify computationally when a generalized anti-Waring number has been found. \end{abstract} \section{Introduction} For positive integers $k$ and $r$, the anti-Waring number $N(k,r)$ is defined to be the smallest positive integer such that $N(k,r)$ and every subsequent positive integer can be expressed as the sum of the $k^{\rm th}$ powers of $r$ or more distinct positive integers. Several authors \cite{Deering,FPV,Johnson,Looper} recently reported results on anti-Waring numbers. Early results considered only $r=1$. As early as 1948, Sprague found that $N(2,1)=129$ \cite{Sprague1} and proved that $N(k,1)$ exists for all $k\geq 2$ \cite{Sprague2}. In 1964, Graham \cite{Graham31} reported that $N(3,1)=12759$ (Graham \cite{Graham31} references another Graham paper ``On the Threshold of completeness for certain sequences of polynomial values'' said to appear circa 1964). Dressler and Parker \cite{Dressler} also computed $N(3,1)$ in 1974. Lin \cite{Lin} used Graham's method to find that $N(4,1) = 5134241$ with a computer in 1970. In 1992, Patterson \cite[pp.\ 18--23]{Patterson} found that $N(5,1)=67898772$. In this paper, we independently verify each of these numbers and show that $N(6,1)=11146309948$. More recently, Looper and Saritzky \cite{Looper} proved that $N(k,r)$ exists for all positive integers $k$ and $r$. Deering and Jamieson \cite{Deering} found specific values of $N(2,r)$ for $1\leq r\leq 10$ and $N(3,r)$ for $1\leq r\leq 5$. Shortly afterwards, Fuller et al.\ \cite{FPV} computed values of $N(2,r)$ for $1\leq r\leq 50$ and $N(3,r)$ for $1\leq r\leq 30$. We also verify these numbers and present $N(k,r)$ for more values of $k$ and $r$. One can verify a suspected value of $N(k,r)$ using different sets of conditions \cite{Deering,FPV}. In an effort to generalize the anti-Waring results we consider a nondecreasing sequence of positive integers $A=(a_i)_{i\in\mathbb{N}}$. Here and throughout we use $\mathbb{N}=\left\{1,2,3,\dots \right\}$. For positive integers $k$, $n$, and $r$ we define the \emph{generalized anti-Waring number} $N(k,n,r,A)$ to be the smallest positive integer, if it exists, such that it and every subsequent positive integer can be expressed as the sum of the $k^{\rm th}$ powers of the $a_i$ with $i\geq n$ ranging over $r$ or more distinct values. If the sequence $A$ has all distinct elements, we may use set notation for the last argument of the generalized anti-Waring number. The generalized anti-Waring number $N(k,n,r,A)$ does not exist for all sequences $A$ (see Theorems~\ref{dne_gcd} and \ref{dne_factorial} in Section~\ref{section:NknrA}). Looper and Saritzky \cite{Looper} proved that both the anti-Waring number $N(k,r)$ and the generalized anti-Waring number $N(k,n,r,\mathbb{N})$ exist for all positive integers $k$, $n$, and $r$. Early results of these generalized anti-Waring numbers when restricting $r$ to 1 used different terminology. A nondecreasing sequence $S$ of positive integers is \textit{complete} if all sufficiently large positive integers can be written as a sum of distinct elements of $S$. If $S$ is a complete sequence, the \textit{threshold of completeness}, $\theta (S)$, is the largest positive integer that is not expressible as a sum of distinct elements of $S$. Therefore, the threshold of completeness, $\theta (S)$, is one less than the generalized anti-Waring number $N(1,1,1,S)$. Also, if $S=(s_i)_{i\in\mathbb{N}}$ is a nondecreasing sequence of positive integers such that the sequence $(s_i^k)_{i\geq n}$ is complete, then the generalized anti-Waring number $N(k,n,1,S)$ exists and $N(k,n,1,S) -1 = \theta\left( (s_i^k)_{i\geq n}\right)$. Brown \cite{Brown} defined a sequence to be complete only when the threshold of completeness is zero; we use the more general definition. In the literature on complete sequences, some authors only report that a sequence is complete and hence the generalized anti-Waring number exists; some authors actually find the threshold of completeness. In 1952, Lekkerkerker \cite{Lekkerkerker} reported an account of the Zeckendorf representation (circa 1939 \cite{Zeckendorf}), i.e., that every natural number is either a Fibonacci number or can be expressed as the sum of nonconsecutive Fibonacci numbers. Hence the generalized anti-Waring number for the Fibonacci sequence $F$ is $N(1,1,1,F)=1$. In 1975, Kl{\o}ve \cite{Klove} found thresholds of completeness for sequences of the form $\left( \lfloor i^{\alpha} \rfloor\right)_{i\in\mathbb{N}}$, where $\lfloor x\rfloor$ is the floor function, for $1\leq\alpha\leq 4.18$ in increments of 0.02. In 1978, Porubsk\'{y} \cite{Porubsky} proved that $N(k,1,1,\mathbb{P})$ exists for all positive integers $k$ and the sequence of primes $\mathbb{P}$. Burr and Erd\H{o}s \cite{BurrEr} considered perturbations of complete sequences that resulted in noncomplete sequences and vice versa. Generalized anti-Waring numbers extend the concept of anti-Waring numbers to sequences other than $\mathbb{N}$. The generalization also extends the concept of complete sequences to consider sums of $r$ or more terms. We will present conditions needed to verify values of $N(k,n,r,A)$ computationally, sequences for which no $N(k,n,r,A)$ exists, and new values of $N(k,n,r,A)$ for various sequences. \section{Verifying $N(k,n,r,A)$, when it exists} \label{section:NknrA} For given positive integers $k$, $n$, $r$, and any nondecreasing sequence of positive integers $A=(a_i)_{i\in\mathbb{N}}$, we define a positive integer to be \textit{$(k,n,r,A)$-good} if it can be written as a sum of the $k^{\rm th}$ powers of $r$ or more distinct elements of the sequence $(a_i)_{i\geq n}$. We define a positive integer that is not $(k,n,r,A)$-good to be \textit{$(k,n,r,A)$-bad}. Hence the generalized anti-Waring number $N(k,n,r,A)$ is the smallest positive integer such that it and every subsequent integer is $(k,n,r,A)$-good. Equivalently the threshold of completeness $N(k,n,r,A)-1$ is the largest integer that is $(k,n,r,A)$-bad. The generalized anti-Waring number $N(k,n,r,A)$ does not exist for all sequences $A$. For example, the sum of any elements of the sequence $(2,4,6,8, \ldots )$ of positive even integers will never be odd. This is an instance of a more general phenomenon. \begin{theorem} \label{dne_gcd} Let $A=(a_i)_{i\in\mathbb{N}}$ be a nondecreasing sequence of positive integers. If all $a_i$ for $i\geq n$ have a common divisor $d>1$, then for any positive integers $k$ and $r$, the generalized anti-Waring number $N(k,n,r,A)$ does not exist. \end{theorem} \begin{proof} Every sum of positive powers of the $a_i$, $i\geq n$, is divisible by $d$. Since $d>1$, arbitrarily large integers not divisible by $d$ exist. Thus, arbitrarily large integers not representable in any way as a sum of powers of some of the $a_n, a_{n+1}, \ldots$ also exist. \end{proof} If instead the greatest common divisor is one, then the generalized anti-Waring number may or may not exist. We will consider examples of both cases. As an additional example, the sequence of factorials has no generalized anti-Waring number. \begin{theorem} \label{dne_factorial} Let $A=(i!)_{i\in\mathbb{N}}$, and let $k$, $n$, and $r$ are any positive integers. Then the generalized anti-Waring number $N(k,n,r,A)$ does not exist. \end{theorem} \begin{proof} First notice that for each $a_i\in A$, $$a_i^k \bmod 6\equiv \begin{cases} 1,&\text{if $i=1$;} \\ 2^k \bmod 6,&\text{if $i=2$;} \\0, &\text{if $i>2$.}\end{cases}$$ Consider any $(k,n,r,A)$-good number $m$. Distinct integers $i_1, i_2, \ldots ,i_t$ exist such that $$m = a_{i_1}^k + a_{i_2}^k + \cdots + a_{i_t}^k$$ where $t\geq r$ and $i_\alpha \geq n$ for each $\alpha\in\{1,2,\ldots ,t\}$. Thus the sum $m$ must be $0$, $1$, $2^k$, or $1+2^k$ modulo 6. Since we can have at most four consecutive $(k,n,r,A)$-good integers, no largest $(k,n,r,A)$-bad integer exists. \end{proof} On the other hand, in some cases the generalized anti-Waring number $N(k,n,r,A)$ is known to exist, but its value has not been found. As mentioned above, both the anti-Waring number $N(k,r)$ and the generalized anti-Waring number $N(k,n,r,\mathbb{N})$ exist for all $k$, $n$, and $r$ \cite{Looper}. A general formula for either of these is not known, but we present several values in the next section. We rewrite the following result related to complete sequences by Brown \cite[Theorem 1]{Brown} in terms of generalized anti-Waring numbers. \begin{theorem} \label{brownthm} Let $k$ and $n$ be positive integers, and let $A=(a_i)_{i\in\mathbb{N}}$ be a nondecreasing sequence of positive integers. The generalized anti-Waring number $N(k,n,1,A)$ both exists and equals one if and only if (i) $a_n = 1$ and (ii) for all integers $p \geq n$, $a_{p+1}^k\leq 1 + \sum_{i=n}^p a_{i}^k$. \end{theorem} This result only considers $r=1$. Also since Brown \cite{Brown} defined complete sequences requiring the threshold of completeness to be zero, he requires $a_n=1$. Theorem~\ref{brownthm} proves that all positive integers are representable as a sum of different elements of sequences such as the natural numbers, the Fibonacci numbers, and the powers of two (including $2^0$). We must consider different conditions for the more general definition of complete sequences with any threshold of completeness. The next result from Graham \cite[Theorem 4]{Graham31} establishes completeness conditions for sequences generated by polynomials. \begin{theorem}\label{grahamthm} Let $f(x)$ be a polynomial with real coefficients expressed in the form $$f(x)=\alpha_0+\alpha_1\binom{x}{1}+\cdots + \alpha_n\binom{x}{n},\quad \alpha_n\neq 0.$$ The sequence $S(f)=(f(1),f(2),\cdots )$ is complete if and only if \begin{enumerate} \item $\alpha_k=p_k/q_k$ for some integers $p_k$ and $q_k$ with $\gcd(p_k,q_k) =1$ and $q_k\neq 0$ for $0\leq k\leq n$, \item $\alpha_n>0$, and \item $\gcd (p_0,p_1,\ldots ,p_n)=1$. \end{enumerate} \end{theorem} Again, in terms of generalized anti-Waring numbers Theorem~\ref{grahamthm} only considers the case of $r=1$ and can only be used to establish that a given generalized anti-Waring number exists. As a remark to this theorem, Graham notes that a sequence $(f(1),f(2),f(3),\ldots )$ is complete if and only if $(f(n),f(n+1),f(n+2),\ldots )$ is complete for any $n$. The next theorem shows that nothing like this can be expected in general. \begin{theorem} Let $k$, $n$, and $r$ be positive integers, and let $A$ be a sequence of nondecreasing positive integers. If the generalized anti-Waring number $N(k,n,r,A)$ exists, then so does $N(k,j,r,A)$ for $j\in\{1,2,\ldots , n-1\}$ and $N(k,j,r,A)\leq N(k,n,r,A)$. Furthermore, the converse is false. \end{theorem} \begin{proof} The implication is clear. If all positive integers greater than or equal to $N(k,n,r,A)$ can be written as a sum $k^{\rm th}$ powers of $r$ or more distinct elements of $(a_i)_{i\geq n}$, then, with the same elements, each positive integer can be written as a sum $k^{\rm th}$ powers of $r$ or more distinct elements of $(a_i)_{i\geq j}$ for $j\in\{1,2,\ldots , n-1\}$. Therefore, we have $N(k,j,r,A)\leq N(k,n,r,A)$ for $j\in\{1,2,\ldots , n-1\}$. To see that the converse is false, consider the sequence $A=\left(2^{i-1}\right)_{i\in\mathbb{N}}$. From the binary representation of the positive integers, the generalized anti-Waring number $N(1,1,1,A)$ clearly exists and equals one. However, the generalized anti-Waring number $N(1,2,1,A)$ does not exist because no odd integer can be expressed as a sum of elements from $\left(2^{i-1}\right)_{i\geq 2}$. \end{proof} In general, whether $N(k,n,r,A)$ exists or not cannot easily be determined. However, we can validate a suspect value of $N(k,n,r,A)$ if enough consecutive integers are $(k,n,r,A)$-good and certain other conditions are met. Theorem~\ref{verify_N} is a generalization of a recent result for anti-Waring numbers \cite[Theorem 2.2]{FPV}. \begin{theorem} \label{verify_N} Let $k$, $n$, $r$, $b$, and $\hat{N}$ be positive integers, and let $A=(a_i)_{i\in\mathbb{N}}$ with $0 n+r-1.$$ Finally, we have that $$x = \sum_{i=n}^{n+r-2}i+\left(x-\sum_{i=n}^{n+r-2}i\right)$$ so the integer $x$ is the sum of $r$ distinct integers greater than or equal to $n$. \end{proof} \begin{theorem}\label{thmN1nrst} For positive integers $n$, $r$, and $s$ and integers $t$ such that $|t|1$ and the corresponding $x$ and $b$ that satisfy Theorem~\ref{verify_N}. Values of $N(1,n,r,\mathbb{N})$ are given by Theorem~\ref{formula_N1nrN}.} \label{Nknrtab} \end{table} \begin{table}[H] \footnotesize \begin{center} \resizebox{.40\textwidth}{!}{% \begin{tabular}{|r|rrr|rrr|} \hline $(s,t)$ & $k=2$ & $x$ & $b$ & $k=3$ & $x$ & $b$ \\ \hline $(2,-1)$& 1923 & 18&64 & 212595 & 15&77 \\ $(2,+1)$&2355 &20 &71 & 266459 & 16&83 \\ \hline $(3,-2)$& 3250 & 23& 83& 942316 & 25&126 \\ $(3,-1)$& 3014 &22 &80 & 957226 & 25&126 \\ $(3,+1)$&4093 & 26&92 & 1103569 & 26&132\\ $(3,+2)$&4414 & 27&96 & 1181758 & 27&135\\ \hline $(4,-3)$& 10588 & 42&148 & 2576040 & 35&174\\ $(4,-1)$& 11268 & 43&153 & 3026615 & 37&184\\ $(4,+1)$&13708 & 48&167 & 3152462 & 37&187 \\ $(4,+3)$&14948 & 50&175 & 3534459 & 39&193\\ \hline $(5,-4)$& 14900 & 50&174 & 6146241 & 47&232\\ $(5,-3)$& 14121 & 49&170 & 6373428 & 47&236\\ $(5,-2)$& 16810 & 53&186 & 6672804 & 48&239\\ $(5,-1)$& 16379 & 52&184 & 7077048 & 49&244\\ $(5,+1)$&17242 & 54&187 & 7165274 & 49&245\\ $(5,+2)$&19090 & 57&198 & 7526193 & 50&249\\ $(5,+3)$&19690 & 58&201 & 7821959 & 51&252\\ $(5,+4)$&19799 & 58&201 & 8326652 & 52&257\\ \hline $(6,-5)$& 255964 & 209&717 & 32025571 & 82&402\\ $(6,-1)$& 261868 & 211&727 & 35431051 & 85&416\\ $(6,+1)$&270796 & 215&738 & 38008681 & 87&426 \\ $(6,+5)$&282028 & 219&754 & 40622251 & 88&436 \\ \hline $(7,-6)$& 44329 & 87&300 & 24233667 & 74&367 \\ $(7,-5)$& 45769 & 88&305 & 23668124 & 74&363 \\ $(7,-4)$& 49737 & 92&317 & 25473560 & 76&373 \\ $(7,-3)$& 49009 & 91&315 & 26139255 & 76&376 \\ $(7,-2)$& 48989 & 91&315 & 27035708 & 77&380 \\ $(7,-1)$& 49537 & 92&317 & 27348027 & 77&382 \\ $(7,+1)$&51889 & 94&324 & 28963994 & 79&389 \\ $(7,+2)$&55884 & 97&337 & 28297320 & 78&387 \\ $(7,+3)$&54217 & 96&331 & 30183369 & 80&394 \\ $(7,+4)$&60377 & 101&350 & 28992218 & 79&389 \\ $(7,+5)$&58292 & 99&344 & 31374203 & 81&400 \\ $(7,+6)$&63453 & 104&358 & 31015095 & 81&397 \\ \hline $(8,-7)$& 183828 & 177&608 & 43603746 & 91&445 \\ $(8,-5)$& 186684 & 178&614 & 44323025 & 91&448 \\ $(8,-3)$& 192748 & 181&623 & 44594177 & 91&449 \\ $(8,-1)$& 199124 & 184&634 & 49916598 & 95&466 \\ $(8,+1)$&208164 & 188&648 & 51794250 & 96&472 \\ $(8,+3)$&216940 & 192&661 & 53940372 & 97&479 \\ $(8,+5)$&223884 & 195&672 & 53774817 & 97&478 \\ $(8,+7)$&227204 & 197&676 & 55157135 & 98&482 \\ \hline $(9,-8)$& 104873 & 134&460 & 316621582 & 176&861 \\ $(9,-7)$& 114857 & 140&481 & 317215246 & 176&862 \\ $(9,-5)$& 114653 & 140&481 & 327375655 & 178&871 \\ $(9,-4)$& 118829 & 142&490 & 329700964 & 179&872 \\ $(9,-2)$& 120113 & 143&492 & 338139583 & 180&880 \\ $(9,-1)$& 130217 & 149&512 & 339498184 & 180&882 \\ $(9,+1)$&134681 & 151&522 & 352115215 & 183&891 \\ $(9,+2)$&129149 & 148&511 & 358747834 & 184&897 \\ $(9,+4)$&137873 & 153&528 & 371854375 & 186&908 \\ $(9,+5)$&141329 & 155&534 & 365220868 & 185&902 \\ $(9,+7)$&142825 & 156&536 & 383482411 & 188&917 \\ $(9,+8)$&149990 & 160&549 & 376489804 & 187&911 \\ \hline \end{tabular} } \end{center} \caption{Values of $N(k,1,1,(si+t)_{i\in\mathbb{N}})$ and the corresponding $x$ and $b$ that satisfy Theorem~\ref{verify_N}. The generalized anti-Waring number $N(k,n,r,(si+t)_{i\in\mathbb{N}})$ does not exist if $\gcd (s,t) > 1$ by Theorem~\ref{dne_gcd}, and values of $N(1,n,r,(si+t)_{i\in\mathbb{N}})$ are given by Theorem~\ref{thmN1nrst}.} \label{Nk11sttabA} \end{table} \begin{table}[H] \footnotesize\begin{center} \begin{tabular}{|r|rrr|rrr|rr|r|rrr|} \hline $(s,t)$ & $k=2$ & $x$ & $b$ & $k=3$ & $x$ & $b$ \\ \hline $(10,-1)$&2866844&701&2396& 167900541&142&698 \\ $(10,+1)$&2770803&689&2356& 164930981&142&693 \\ $(11,-1)$&251377&207&711& 188148921&148&724 \\ $(11,+1)$&260001&211&723& 200560127&151&740 \\ $(12,-1)$&1186948&451&1543&1871937463&320&1555 \\ $(12,+1)$&1207948&455&1556&1897625923&321&1562 \\ $(13,-1)$&484333&288&986&427144568&195&951 \\ $(13,+1)$&498269&292&1000&434996727&196&957 \\ $(14,-1)$&14209388&1561&5333&718660158&232&1130 \\ $(14,+1)$&14254244&1563&5342&750996509&235&1148 \\ $(15,-1)$&878885&388&1328&7192487965&501&2434 \\ $(15,+1)$&890945&390&1338&7247153841&502&2440 \\ $(16,-1)$&4345668&863&2950&1162662009&272&1328 \\ $(16,+1)$&4411364&869&2973&1188105593&274&1337 \\ $(17,-1)$&1468737&501&1717&1528625985&298&1454 \\ $(17,+1)$&1487777&505&1727&1574453445&302&1468 \\ $(18,-1)$&47752420&2862&9774&23390399911&742&3606 \\ $(18,+1)$&47891524&2866&9789&23431535880&743&3607 \\ $(19,-1)$&2296953&627&2146&2670453204&360&1750 \\ $(19,+1)$&2330393&632&2161&2654207231&359&1746 \\ $(20,-1)$&12065164&1438&4915&3392160594&390&1895 \\ $(20,+1)$&12241324&1449&4950&3426870488&391&1901 \\ \hline \end{tabular} \end{center} \caption{Additional values of $N(k,1,1,(si+t)_{i\in\mathbb{N}})$ and the corresponding $x$ and $b$ that satisfy Theorem~\ref{verify_N}. The generalized anti-Waring number $N(k,n,r,(si+t)_{i\in\mathbb{N}})$ does not exist if $\gcd (s,t) > 1$ by Theorem~\ref{dne_gcd}, and values of $N(1,n,r,(si+t)_{i\in\mathbb{N}})$ are given by Theorem~\ref{thmN1nrst}.} \label{Nk11sttabB} \end{table} \section{Future work} With enough time and computing power, we can compute any values of $N(k,n,r,A)$ that exist. However, we have only found a formula for cases with $k=1$. Some simple inequalities involving $N(k,n,r,A)$ are clear. For example, for $i\leq j$ we have the inequalities $N(k,i,r,A)\leq N(k,j,r,A)$ and $N(k,n,i,A)\leq N(k,n,j,A)$ when each exists. We are unable to prove the inequality $N(k,n,r,A)\leq N(k+1,n,r,A)$ even though all data seem to emphatically support it. We have found and considered several algorithms for generating good numbers. However, none reveal a formula for the largest bad number, i.e., threshold of completeness for $k>1$. \section{Acknowledgments} We thank the editor and the anonymous referee for their time and consideration. The referee's report was thorough and included valuable suggestions. \begin{thebibliography}{99} \bibitem{Brown} J. L. Brown, Jr., Note on complete sequences of integers, \textit{Amer. Math. Monthly} \textbf{68} (1961), 557--560. \bibitem{BurrEr} S. Burr and P. Erd\H{o}s, Completeness properties of perturbed sequences, \textit{J. Number Theory} \textbf{13} (1981), 446--455. \bibitem{Deering} J. Deering and W. Jamieson, On anti-Waring numbers, to appear in \textit{J. Combin. Math. Combin. Comput}. \bibitem{Dressler} R. Dressler and T. Parker, 12,758, \textit{Math. Comp.} \textbf{28} (1974), 313--314. \bibitem{FPV} C. Fuller, D. Prier, and K. Vasconi, New results on an anti-Waring problem, \textit{Involve} \textbf{7} (2014), 239--244. \bibitem{Graham31} R. L. Graham, Complete sequences of polynomial values, \textit{Duke Math. J.} \textbf{31} (1964), 275--285. \bibitem{Johnson} P. Johnson and M. Laughlin, An anti-Waring conjecture and problem, \textit{Int. J. Math. Comput. Sci.} \textbf{6} (2011), 21--26. \bibitem{Klove} T. Kl\o ve, Sums of distinct elements from a fixed set, \textit{Math. Comp.} \textbf{29} (1975), 1144--1149. \bibitem{Lekkerkerker} C. G. Lekkerkerker, Voorstelling van natuurlikjke getallen door een som van getallen van Fibonaaci, \textit{Simon Stevin} \textbf{29} (1952), 190--195. \bibitem{Lin} S. Lin, Computer experiments on sequences which form integral bases, in J. Leech, ed., \textit{Computational Problems in Abstract Algebra}, Pergamon Press, 1970, pp.\ 365--370. \bibitem{Looper} N. Looper and N. Saritzky, An anti-Waring theorem and proof, to appear in \textit{J. Combin. Math. Combin. Comput.} \bibitem{Patterson} C. Patterson, \textit{The Derivation of a High Speed Sieve Device}, Ph.D.\ thesis, University of Calgary, 1992. \bibitem{Porubsky} \v{S}. Porubsk\'{y}, Sums of prime powers, \textit{Monatsh. Math} \textbf{86} (1979), 301--303. \bibitem{Richert} H. E. Richert, \"{U}ber Zerlegungen in paarweise verschiedene Zahlen, \textit{Nordisk Mat. Tidskr.} \textbf{31} (1949), 120--122. \bibitem{Sprague1} R. Sprague, \"{U}ber Zerlegungen in ungleiche Quadratzahlen, \textit{Math. Z.} \textbf{51} (1948), 289--290. \bibitem{Sprague2} R. Sprague, \"{U}ber Zerlegungen in $n$-te Potenzen mit lauter verschiedenen Grundzahlen, \textit{Math. Z.} \textbf{51} (1948), 466--468. \bibitem{Zeckendorf} E. Zeckendorf, Repr\'{e}sentation des nombres naturels par une somme de nombres de Fibonacci ou de nombres de Lucas, \textit{Bull. Soc. Roy. Sci. Li\`{e}ge} \textbf{41} (1972), 179--182. \end{thebibliography} \bigskip \hrule \bigskip \noindent 2010 {\it Mathematics Subject Classification}: Primary 11P05; Secondary 05A17. \noindent \emph{Keywords: } complete sequence, sum of powers, anti-Waring number. \bigskip \hrule \bigskip \noindent (Concerned with sequence \seqnum{A001661}.) \bigskip \hrule \bigskip \vspace*{+.1in} \noindent Received June 18 2015; revised versions received September 13 2015; September 21 2015. Published in {\it Journal of Integer Sequences}, September 24 2015. \bigskip \hrule \bigskip \noindent Return to \htmladdnormallink{Journal of Integer Sequences home page}{http://www.cs.uwaterloo.ca/journals/JIS/}. \vskip .1in \end{document} .