\documentclass[12pt,reqno]{article} \usepackage[usenames]{color} \usepackage{amssymb} \usepackage{graphicx} \usepackage{amscd} \usepackage[colorlinks=true, linkcolor=webgreen, filecolor=webbrown, citecolor=webgreen]{hyperref} \definecolor{webgreen}{rgb}{0,.5,0} \definecolor{webbrown}{rgb}{.6,0,0} \usepackage{color} \usepackage{fullpage} \usepackage{float} \usepackage{psfig} \usepackage{graphics,amsmath,amssymb} \usepackage{amsthm} \usepackage{amsfonts} \usepackage{latexsym} \usepackage{epsf} \setlength{\textwidth}{6.5in} \setlength{\oddsidemargin}{.1in} \setlength{\evensidemargin}{.1in} \setlength{\topmargin}{-.5in} \setlength{\textheight}{8.9in} \newcommand{\seqnum}[1]{\href{http://oeis.org/#1}{\underline{#1}}} \begin{document} \begin{center} \epsfxsize=4in \leavevmode\epsffile{logo129.eps} \end{center} \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{corollary}[theorem]{Corollary} \newtheorem{lemma}[theorem]{Lemma} \newtheorem{proposition}[theorem]{Proposition} \theoremstyle{definition} \newtheorem{definition}[theorem]{Definition} \newtheorem{example}[theorem]{Example} \newtheorem{conjecture}[theorem]{Conjecture} \theoremstyle{remark} \newtheorem{remark}[theorem]{Remark} \begin{center} \vskip 1cm{\LARGE\bf Bernoulli Numbers and a New Binomial \\ \vskip .1in Transform Identity} \vskip 1cm \large H. W. Gould\\ Department of Mathematics\\ West Virginia University\\ Morgantown, WV 26506\\ USA\\ \href{mailto:gould@math.wvu.edu}{\tt gould@math.wvu.edu} \\ \ \\ Jocelyn Quaintance\\ Department of Mathematics\\ Rutgers University\\ Piscataway, NJ 08854\\ USA\\ \href{mailto:quaintan@math.rutgers.edu}{\tt quaintan@math.rutgers.edu} \end{center} \vskip .2 in \begin{abstract} Let $(b_n)_{n \geq 0}$ be the binomial transform of $(a_n)_{n \geq 0}$. We show how a binomial transformation identity of Chen proves a symmetrical Bernoulli number identity attributed to Carlitz. We then modify Chen's identity to prove a new binomial transformation identity. \end{abstract} \vskip .2 in Carlitz \cite{lc} posed as a problem the remarkable symmetric Bernoulli number identity \begin{align}\label{eq1} (-1)^m\sum_{k=0}^m{m\choose k}B_{n+k} &= (-1)^n\sum_{k=0}^n{n\choose k}B_{m+k}, \end{align} valid for arbitrary $m, n\geq 0$. The published solution by Shannon \cite{ags} used mathematical induction on $m$ and $n$. The identity was rediscovered recently by Vassilev and Vassilev-Missana \cite{vm}, but stated in the form \begin{align}\label{eq2} (-1)^m\sum_{k=0}^{m-1}{m\choose k}B_{n+k} &= (-1)^n\sum_{k=0}^{n-1}{n\choose k}B_{m+k}, \end{align} valid for arbitrary positive integers $m$ and $n$. Identity (\ref{eq2}) is equivalent to Identity (\ref{eq1}) since $\left[(-1)^m - (-1)^n\right]B_{m+n} = 0$. Their proof used the symmetry of a function $f_k(x,y)$ involving Bernoulli numbers introduced in a separate paper \cite{vm1}. They give no reference to Carlitz's or to Shannon's proof. An alternative proof of Equation (\ref{eq1}) is derived through an application of a binomial transformation identity discovered by Chen \cite{kwc}. Let $(a_n)$ be any sequence of numbers, and define the binomial transform of $(a_n)$ to be the sequence $(b_n)$, where $b_n = \sum_{k=0}^n{n\choose k}a_k$. A corollary of \cite[Thm.\ 2.1] {kwc} is \begin{align}\label{eq3} \sum_{k=0}^m{m\choose k}a_{n+k} &= \sum_{k=0}^n(-1)^{n-k}{n\choose k}b_{m+k}. \end{align} The Bernoulli numbers satisfy the recurrence $\sum_{k=0}^n{n\choose k}B_k = (-1)^nB_n$ for $n\geq 0$. Setting $a_k = B_k$, we then have $b_n = (-1)^nB_n$, so that Equation (\ref{eq3}) becomes \begin{align*} \sum_{k=0}^m{m\choose k}B_{n+k} = \sum_{k=0}^n(-1)^{n-k}{n\choose k}(-1)^{m+k}B_{m+k}, \end{align*} which is precisely Identity (\ref{eq1}) of Carlitz. Chen's proof of Equation (\ref{eq3}) relies on certain properties of Seidel matrices. We present a direct proof which relies on the hypergeometric identity \begin{align}\label{eq4} \sum_{k=0}^m(-1)^k{m\choose k}{x+k\choose r} &= (-1)^m{x\choose r-m}; \end{align} see \cite[Identity 3.47, p.\ 27]{hwg}. In Equation (\ref{eq4}) we require that $m$ and $r$ be nonnegative integers and $x$ be a complex number. Since the binomial transform inverts to give $a_n = \sum_{k=0}^n(-1)^{n-k}{n\choose k}b_k$ we find that \begin{align*} \sum_{k=0}^m{m\choose k}a_{n+k} &= \sum_{k=0}^m{m\choose k}\sum_{j=0}^{n+k}(-1)^{n+k-j}{n+k\choose j}b_j\\ &= \sum_{j=0}^{n+m}(-1)^{-j}b_j\sum_{k=j-n}^m(-1)^{n+k}{m\choose k}{n+k\choose j}\\ &= \sum_{j=0}^{n+m}(-1)^{-j}b_j\sum_{k=0}^m(-1)^{n+k}{m\choose k}{n+k\choose j}\\ &= \sum_{j=0}^{n+m}(-1)^{n+m-j}{n\choose j-m}b_j = \sum_{j=0}^n(-1)^{n-j}{n\choose j}b_{j+m}. \end{align*} A careful analysis of this preceding proof yields a short proof of \cite[Thm.\ 3.2]{kwc}, where Chen relies on lengthy induction arguments. We will instead use Equation (\ref{eq4}). \begin{theorem}\cite[Thm.\ 3.2]{kwc} Let $b_n$ be the binomial transform of $a_n$. Then \begin{align}\label{eq5} \sum_{k=0}^m{m\choose k}{n+k\choose s}a_{n+k-s} &= \sum_{k=0}^n(-1)^{n-k}{n\choose k}{m+k\choose s}b_{m+k-s}, \end{align} for arbitrary nonnegative $m, n,$ and $s$. \end{theorem} \begin{proof} By definition $b_n = \sum_{k=0}^n{n\choose k}a_k$. This implies that $a_n = \sum_{k=0}^n(-1)^{n-k}{n\choose k}b_k$. Hence \begin{align*} \sum_{k=0}^m{m\choose k}{n+k\choose s}a_{n+k-s} &= \sum_{k=0}^m{m\choose k}{n+k\choose s}\sum_{j=0}^{n+k-s}(-1)^{n+k-s-j}{n+k-s\choose j}b_j\\ &= \sum_{j=0}^{n+m-s}(-1)^{n-s-j}b_j\sum_{k=0}^m(-1)^k{m\choose k}{n+k\choose s}{n+k-s\choose j}\\ &= \sum_{j=0}^{n+m-s}(-1)^{n-s-j}{s+j\choose s}b_j\sum_{k=0}^m(-1)^k{m\choose k}{n+k\choose s+j}\\ &= \sum_{j=m-s}^{n+m-s}(-1)^{m+n-j-s}{s+j\choose s}{n\choose j+s-m}b_j\\ &= \sum_{j=0}^n(-1)^{n-j}{n\choose j}{m+j\choose s}b_{m+j-s}, \end{align*} where the fourth equality follows by Equation (\ref{eq4}). \end{proof} Equation (\ref{eq5}) allows us to establish a generalization of the curious formula \begin{align}\label{eq6} \sum_{k=0}^n{n\choose k}{n+k\choose n}x^k &= \sum_{k=0}^n(-1)^{n-k}{n\choose k}{n+k\choose n}(1+x)^k, \end{align} discovered by Simons \cite{ss}. A quick proof of this was given by Gould \cite{hwg1} using elementary properties of Legendre polynomials. Instead, choose $a_n = x^n$ for all $n\geq 0$. Then $b_n = (1+x)^n$ and Identity (\ref{eq5}) tells us that \begin{align*} \sum_{k=0}^m{m\choose k}{n+k\choose s}x^{n+k-s} &= \sum_{k=0}^n(-1)^{n-k}{n\choose k}{m+k\choose s}(1+x)^{m+k-s}. \end{align*} Letting $m = s = n$ recovers Identity (\ref{eq6}). Through an induction argument Chen proves \begin{theorem}\cite[Thm.\ 3.1]{kwc} Let $b_n$ be the binomial transform of $a_n$. Then \begin{align}\label{eq7} \sum_{k=0}^m\frac{{m\choose k}}{{n+k+s\choose s}}a_{n+k+s} &= \sum_{k=0}^n(-1)^{n-k}\frac{{n\choose k}}{{m+k+s\choose s}}b_{m+k+s}\notag\\ &+ \sum_{j=0}^{s-1}\sum_{i=0}^{s-1-j}{s-1-j\choose i}{s-1\choose j}\frac{(-1)^{n+1+i}sa_j}{(m+n+1+i){m+n+i\choose n}}, \end{align} where $m$, $n$, and $s$ are nonnegative integers. \end{theorem} If we use Equation (\ref{eq4}) and the following hypergeometric identity attributed to Frisch \cite{rf}, \cite[p.\ 337]{en}, \begin{align}\label{eq8} \sum_{k=0}^n(-1)^k{n\choose k}\frac{1}{{b+k\choose c}} &= \frac{c}{n+c}\frac{1}{{n+b\choose b-c}},\qquad b\geq c > 0, \end{align} \cite[Identity 4.2, p.\ 46]{hwg}, we are able to prove the following new binomial transformation identity. \begin{theorem} Let $b_n$ be the binomial transform of $a_n$. Let $m$, $n$, and $s$ be nonnegative integers. Then \begin{align}\label{eqA} \sum_{j=0}^s\frac{{s\choose j}a_j}{(m+n+s+1-j){m+n+s-j\choose m}} &= \sum_{j=0}^s\frac{(-1)^{s-j}{s\choose j}b_j}{(m+n+s+1-j){m+n+s-j\choose n}}. \end{align} \end{theorem} \begin{proof} By definition $b_n = \sum_{k=0}^n{n\choose k}a_k$. Hence $a_n = \sum_{k=0}^n(-1)^{n-k}{n\choose k}b_k$ and \begin{align*} &\sum_{k=0}^m\frac{{m\choose k}}{{n+k+s\choose s}}a_{n+k+s} = \sum_{k=0}^m\frac{{m\choose k}}{{n+k+s\choose s}}\sum_{j=0}^{n+k+s}(-1)^{n+k+s-j}{n+k+s\choose j}b_j\\ &= \sum_{j=0}^{m+n+s}(-1)^{n+s-j}b_j\sum_{k=0}^m(-1)^k\frac{{m\choose k}}{{n+k+s\choose s}}{n+k+s\choose j}\\ &= \sum_{j=s}^{m+n+s}(-1)^{n+s-j}\frac{b_j}{{j\choose s}}\sum_{k=0}^m(-1)^k{m\choose k}{n+k\choose j-s} + \sum_{j=0}^{s-1}(-1)^{n+s-j}b_j\sum_{k=0}^m(-1)^k\frac{{m\choose k}}{{n+k+s\choose s}}{n+k+s\choose j}\\ &= \sum_{j=s+m}^{m+n+s}(-1)^{m+n+s-j}\frac{{n\choose j-s-m}}{{j\choose s}}b_j + \sum_{j=0}^{s-1}(-1)^{n+s-j}b_j\sum_{k=0}^m(-1)^k\frac{{m\choose k}}{{n+k+s\choose s}}{n+k+s\choose j}\\ &= \sum_{j=0}^n(-1)^{n-j}\frac{{n\choose j}}{{m+j+s\choose s}}b_{m+j+s} + \sum_{j=0}^{s-1}(-1)^{n+s-j}b_j\sum_{k=0}^m(-1)^k\frac{{m\choose k}}{{n+k+s\choose s}}{n+k+s\choose j}\\ &= \sum_{j=0}^n(-1)^{n-j}\frac{{n\choose j}}{{m+j+s\choose s}}b_{m+j+s} + \sum_{j=0}^{s-1}(-1)^{n+s-j}{s\choose j}b_j\sum_{k=0}^m(-1)^k\frac{{m\choose k}}{{n+k+s-j\choose s-j}}\\ &= \sum_{j=0}^n(-1)^{n-j}\frac{{n\choose j}}{{m+j+s\choose s}}b_{m+j+s} + \sum_{j=0}^{s-1}(-1)^{n+s-j}\frac{(s-j){s\choose j}}{(m+s-j){m+n+s-j\choose n}}b_j\\ &= \sum_{j=0}^n(-1)^{n-j}\frac{{n\choose j}}{{m+j+s\choose s}}b_{m+j+s} + \sum_{j=0}^{s-1}(-1)^{n+s-j}\frac{s{s-1\choose j}}{(m+n+s-j){m+n+s-j-1\choose n}}b_j. \end{align*} The fourth line follows from Equation (\ref{eq4}) while the seventh follows from Equation (\ref{eq8}). In summary, we have shown that \begin{align}\label{eq9} \sum_{k=0}^m\frac{{m\choose k}}{{n+k+s\choose s}}a_{n+k+s} &= \sum_{j=0}^n\frac{(-1)^{n-j}{n\choose j}}{{m+j+s\choose s}}b_{m+j+s} + \sum_{j=0}^{s-1}\frac{(-1)^{n+s-j}s{s-1\choose j}}{(m+n+s-j){m+n+s-j-1\choose n}}b_j, \end{align} If we compare Identity (\ref{eq7}) to Identity (\ref{eq9}), we conclude that \begin{align}\label{eq10} \sum_{j=0}^{s-1}&\frac{(-1)^{n+s-j}s{s-1\choose j}}{(m+n+s-j){m+n+s-j-1\choose n}}b_j \notag\\ &= \sum_{j=0}^{s-1}\sum_{i=0}^{s-1-j}{s-1-j\choose i}{s-1\choose j}\frac{(-1)^{n+1+i}sa_j}{(m+n+1+i){m+n+i\choose n}}. \end{align} Equation (\ref{eq10}) can be furthered simplified by applying Equation (\ref{eq8}). In particular, \begin{align*} \sum_{j=0}^{s-1}\sum_{i=0}^{s-1-j}{s-1-j\choose i}&{s-1\choose j}\frac{(-1)^{n+1+i}sa_j}{(m+n+1+i){m+n+i\choose n}}\\ &= \sum_{j=0}^{s-1}(-1)^{n+1}\frac{s}{n+1}{s-1\choose j}a_j\sum_{i=0}^{s-1-j}(-1)^i\frac{{s-1-j\choose i}}{{m+n+1+i\choose n+1}}\\ &= \sum_{j=0}^{s-1}(-1)^{n+1}\frac{s}{n+1}{s-1\choose j}a_j\frac{n+1}{n+s-j}\frac{1}{{m+n+s-j\choose m}}\\ &= (-1)^{n+1}\sum_{j=0}^{s-1}\frac{s{s-1\choose j}}{(n+s-j){m+n+s-j\choose m}}a_j. \end{align*} These calculations show that Equation (\ref{eq10}) is equivalent to \begin{align} -\sum_{j=0}^{s-1}\frac{{s-1\choose j}}{(n+s-j){m+n+s-j\choose m}}a_j &= \sum_{j=0}^{s-1}(-1)^{s-j}\frac{{s-1\choose j}}{(m+n+s-j){m+n+s-j-1\choose n}}b_j. \end{align} Set $s\rightarrow s+1$ to obtain \begin{align}\label{eqA1} \sum_{j=0}^s\frac{{s\choose j}a_j}{(n+s+1-j){m+n+s+1-j\choose m}} &= \sum_{j=0}^s\frac{(-1)^{s-j}{s\choose j}b_j}{(m+n+s+1-j){m+n+s-j\choose n}}. \end{align} Since $(n+s+1-j){m+n+s+1-j\choose m} = (m+n+s+1-j){m+n+s-j\choose m}$, we see that Equation (\ref{eqA1}) is equivalent to Equation (\ref{eqA}). \end{proof} \begin{thebibliography}{99} \bibitem{lc} L. Carlitz, Problem 795, {\it Math. Mag.} {\bf 44} (1971), 107. \bibitem{ags} A. G. Shannon, Solution of Problem 795, {\it Math. Mag.} {\bf 45} (1972), 55--56. \bibitem{kwc} K. W. Chen, Identities from the binomial transform, {\it J. Number Theory} {\bf 124} (2007), 142--150. \bibitem{rf} R. Frisch, Sur les semi-invariants et moments employ\'{e}s dans l'\'{e}tude des distributions statistiques, {\it Skrifter utgitt av Det Norske Videnskaps-Akademi i Oslo, II}. Historisk-Filosofisk Klasse, 1926, No. 3, 87 pp. \bibitem{en} Eugen Netto, {\it Lehrbuch der Combinatorik}, 2nd edition, 1927. Reprinted by Chelsea, 1958. \bibitem{hwg} H. W. Gould, {\it Combinatorial Identities, A Standardized Set of Tables Listing 500 Binomial Coefficient Summations}, revised edition. Published by the author, Morgantown, WV, 1972. \bibitem{hwg1} H. W. Gould, A curious identity which is not so curious. {\it Math. Gaz.} {\bf 88} (2004), 87. \bibitem{ss} S. Simons, A curious identity, {\it Math. Gaz.} {\bf 85} (2001), 296--298. \bibitem{vm1} P. Vassilev and M. Vassilev-Missana, On the sum of equal powers of the first $n$ terms of an arbitrary arithmetic progression, {\it Notes on Number Theory and Discrete Mathematics} {\bf 11} (2005), 15--21. \bibitem{vm} P. Vassilev and M. Vassilev-Missana, On one remarkable identity involving Bernoulli numbers, {\it Notes on Number Theory and Discrete Mathematics} {\bf 11} (2005), 22--24. \end{thebibliography} \bigskip \hrule \bigskip \noindent 2010 {\it Mathematics Subject Classification}: Primary 11B68; Secondary 05A10, 11B65. \noindent \emph{Keywords: } Bernoulli number, binomial transform. \bigskip \hrule \bigskip \noindent (Concerned with sequences \seqnum{A027641} and \seqnum{A027642}.) \bigskip \hrule \bigskip \vspace*{+.1in} \noindent Received October 2 2013; revised version received January 3 2014. Published in {\it Journal of Integer Sequences}, January 3 2014. \bigskip \hrule \bigskip \noindent Return to \htmladdnormallink{Journal of Integer Sequences home page}{http://www.cs.uwaterloo.ca/journals/JIS/}. \vskip .1in \end{document} .