\documentclass[12pt,reqno]{article} \usepackage[usenames]{color} \usepackage{amssymb} \usepackage{graphicx} \usepackage{amscd} \usepackage[colorlinks=true, linkcolor=webgreen, filecolor=webbrown, citecolor=webgreen]{hyperref} \definecolor{webgreen}{rgb}{0,.5,0} \definecolor{webbrown}{rgb}{.6,0,0} \usepackage{color} \usepackage{fullpage} \usepackage{float} \usepackage{psfig} \usepackage{graphics,amsmath,amssymb} \usepackage{amsthm} \usepackage{amsfonts} \usepackage{latexsym} \usepackage{epsf} \setlength{\textwidth}{6.5in} \setlength{\oddsidemargin}{.1in} \setlength{\evensidemargin}{.1in} \setlength{\topmargin}{-.1in} \setlength{\textheight}{8.4in} \newcommand{\seqnum}[1]{\href{http://oeis.org/#1}{\underline{#1}}} \newcommand{\ZZ}{{\mathbb{Z}}} \newcommand{\CC}{{\mathbb{C}}} \newcommand{\OO}{{\mathcal{O}}} \newcommand{\NN}{{\mathbb{Z}_{\geq 0}}} \newcommand{\FF}{{\mathbb{F}}} \newcommand{\pp}{\tilde{\pi}} \DeclareMathOperator{\ord}{ord} \def\modd#1 #2{#1\ ({\rm mod}\ #2)} \begin{document} \begin{center} \epsfxsize=4in \leavevmode\epsffile{logo129.eps} \end{center} \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{corollary}[theorem]{Corollary} \newtheorem{lemma}[theorem]{Lemma} \newtheorem{proposition}[theorem]{Proposition} \theoremstyle{definition} \newtheorem{definition}[theorem]{Definition} \newtheorem{example}[theorem]{Example} \newtheorem{conjecture}[theorem]{Conjecture} \theoremstyle{remark} \newtheorem{remark}[theorem]{Remark} \begin{center} \vskip 1cm{\LARGE\bf Finite Reciprocal Sums Involving Summands \\ \vskip .03in That are Balanced Products of Generalized\\ \vskip .14in Fibonacci Numbers} \vskip 1cm \large R. S. Melham\\ School of Mathematical Sciences\\ University of Technology, Sydney\\ NSW 2007\\ Australia\\ \href{mailto:ray.melham@uts.edu.au}{\tt ray.melham@uts.edu.au} \end{center} \vskip .2 in \begin{abstract} In this paper we find closed forms, in terms of rational numbers, for certain finite sums. The denominator of each summand is a finite product of terms drawn from two sequences that are generalizations of the Fibonacci and Lucas numbers. \end{abstract} \section{Introduction}\label{sec1} In \cite{mel1,mel2} we considered certain types of finite reciprocal sums involving generalized Fibonacci numbers. Indeed we gave closed forms, in terms of rational numbers, for these sums. Our purpose here is to give closed forms for finite reciprocal sums that are of a different type than those considered in \cite{mel1,mel2}, thereby extending the work in \cite{mel1,mel2}. As in \cite{mel1,mel2}, our results can be used to produce finite reciprocal sums that involve the Fibonacci and Lucas numbers. We begin by introducing the three pairs of integer sequences that feature in this paper. Let $a\geq 0$ and $b\geq 0$ be integers with $\left(a,b\right)\neq \left(0,0\right)$. For $p$ a positive integer we define, for all integers $n$, the sequences $\left\{W_{n}\right\}$ and $\left\{\overline{W}_{n}\right\}$ by \begin{equation*} W_{n}=p W_{n-1}+W_{n-2},~~W_{0}=a,~~W_{1}=b, \end{equation*} and \begin{equation*} \overline{W}_{n}=W_{n-1}+W_{n+1}. \end{equation*} For $(a, b, p)=(0, 1, 1)$ we have $\left\{W_{n}\right\}$=$\left\{F_{n}\right\}$, and $\left\{\overline{W}_{n}\right\}$=$\left\{L_{n}\right\}$, which are the Fibonacci and Lucas numbers, respectively. Retaining the parameter $p$, and taking $(a, b)=(0, 1)$, we write $\left\{W_{n}\right\}$=$\left\{U_{n}\right\}$, and $\left\{\overline{W}_{n}\right\}$=$\left\{V_{n}\right\}$, which are integer sequences that generalize the Fibonacci and Lucas numbers, respectively. Let $\alpha$ and $\beta$ denote the two distinct real roots of $x^2 -p x-1=0$. Set $A=b-a\beta$ and $B=b-a\alpha$. Then the closed forms (the Binet forms) for $\left\{W_{n}\right\}$ and $\left\{\overline{W}_{n}\right\}$ are, respectively, \begin{equation*} W_{n}=\frac{A\alpha^{n}-B\beta^{n}}{\alpha-\beta}, \end{equation*} and \begin{equation*} \overline{W}_{n}=A\alpha^{n}+B\beta^{n}. \end{equation*} We require also the constants $e_{W}=A B=b^{2}-p a b-a^{2}$, and $\Delta=p^2+4$. Throughout this paper we take $k\geq1$, $m\geq0$, and $n\geq2$ to be integers. Let $m_{1}< m_{2}$ and $m_{3} < m_{4}$ be non-negative integers with $m_{1}+ m_{2}=m_{3}+ m_{4}$. We begin by giving a closed form for the finite sum \begin{equation*} S_{4}(k,m,n,m_{1},\ldots,m_{4})=\sum_{i=1}^{n-1}\frac{1}{W_{k(i+m_{1})+m}W_{k(i+m_{2})+m}\overline{W}_{k(i+m_{3})+m}\overline{W}_{k(i+m_{4})+m}}. \end{equation*} Because of the conditions on the $m_{i}$ we consider $S_{4}$ to be the most intriguing sum that we present in this paper. We also give closed forms for similar sums that have longer products in the denominator, and to this end we introduce some notation. For integers $0