\documentclass[12pt,reqno]{article} \usepackage[usenames]{color} \usepackage{amssymb} \usepackage{graphicx} \usepackage{amscd} \usepackage[colorlinks=true, linkcolor=webgreen, filecolor=webbrown, citecolor=webgreen]{hyperref} \definecolor{webgreen}{rgb}{0,.5,0} \definecolor{webbrown}{rgb}{.6,0,0} \usepackage{color} \usepackage{fullpage} \usepackage{float} \usepackage{psfig} \usepackage{graphics,amsmath,amssymb} \usepackage{amsthm} \usepackage{amsfonts} \usepackage{latexsym} \usepackage{epsf} \setlength{\textwidth}{6.5in} \setlength{\oddsidemargin}{.1in} \setlength{\evensidemargin}{.1in} \setlength{\topmargin}{-.5in} \setlength{\textheight}{8.9in} \newcommand{\seqnum}[1]{\href{http://oeis.org/#1}{\underline{#1}}} \begin{document} \begin{center} \epsfxsize=4in \leavevmode\epsffile{logo129.eps} \end{center} \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{corollary}[theorem]{Corollary} \newtheorem{lemma}[theorem]{Lemma} \newtheorem{proposition}[theorem]{Proposition} \theoremstyle{definition} \newtheorem{definition}[theorem]{Definition} \newtheorem{example}[theorem]{Example} \newtheorem{conjecture}[theorem]{Conjecture} \theoremstyle{remark} \newtheorem{remark}[theorem]{Remark} \def\C{{\mathbb{C}}} \def\R{{\mathbb{R}}} \def\N{{\mathbb{N}}} \def\Z{{\mathbb{Z}}} \def\1{{\bf 1}} \def\id{\operatorname{id}} \def\lcm{\operatorname{lcm}} \def\altern{\operatorname{altern}} \def\DFT{\operatorname{DFT}} \def\bino{\operatorname{binom}} \def\logo{\operatorname{log}} \def\Gammo{\operatorname{Gamma}} \def\flooro{\operatorname{floor}} \def\sawo{\operatorname{saw-tooth}} \def\sino{\operatorname{sin}} \def\coto{\operatorname{cot}} \newcommand{\DOT}{\text{\rm\Huge{.}}} \begin{center} \vskip 1cm{\LARGE\bf Weighted Gcd-Sum Functions} \vskip 1cm \large L\'aszl\'o T\'oth \footnote{The author gratefully acknowledges support from the Austrian Science Fund (FWF) under the project Nr. P20847-N18.} \\ Department of Mathematics \\ University of P\'ecs \\ Ifj\'us\'ag u. 6 \\ 7624 P\'ecs \\ Hungary \\ and \\ Institute of Mathematics, Department of Integrative Biology \\ Universit\"at f\"ur Bodenkultur \\ Gregor Mendel-Stra{\ss}e 33 \\ A-1180 Wien \\ Austria \\ \href{mailto:ltoth@gamma.ttk.pte.hu}{\tt ltoth@gamma.ttk.pte.hu}\\ \end{center} \vskip .2 in \begin{abstract} We investigate weighted gcd-sum functions, including the alternating gcd-sum function and those having as weights the binomial coefficients and values of the Gamma function. We also consider the alternating lcm-sum function. \end{abstract} %************************* section 1 ******************************************* \section{Introduction} The gcd-sum function, called also Pillai's arithmetical function (OEIS \seqnum{A018804}) is defined by \begin{equation} \label{gcd_def} P(n):= \sum_{k=1}^n \gcd(k,n) \qquad (n\in \N:=\{1,2,\ldots \}). \end{equation} The function $P$ is multiplicative and its arithmetical and analytical properties are determined by the representation \begin{equation} \label{gcd_convo} P(n)= \sum_{d\mid n} d\, \phi(n/d) \qquad (n\in \N), \end{equation} where $\phi$ is Euler's function. See the survey paper \cite{Tot2010}. Note that for every prime power $p^a$ ($a\in \N$), \begin{equation} \label{P_prime_power} P(p^a)=(a+1)p^a-ap^{a-1}. \end{equation} Now let \begin{equation} \label{gcd_altern_def} P_{\altern}(n):= \sum_{k=1}^n (-1)^{k-1} \gcd(k,n) \qquad (n\in \N) \end{equation} be the alternating gcd-sum function. As far as we know, the function \eqref{gcd_altern_def} was not considered before. Furthermore, let \begin{equation} \label{gcd_binom_def} P_{\bino}(n):= \sum_{k=1}^n \binom{n}{k} \gcd(k,n) \qquad (n\in \N) \end{equation} (OEIS \seqnum{A159068}), where $\binom{n}{k}$ are the binomial coefficients. Every term of the sum \eqref{gcd_binom_def} is a multiple of $n$, since $\gcd(k,n)=kx+ny$ with suitable integers $x,y$ and $k\binom{n}{k}=n\binom{n-1}{k-1}$ ($1\le k\le n$). Note also the symmetry $\binom{n}{k} \gcd(k,n)= \binom{n}{n-k} \gcd(n-k,n)$ ($1\le k\le n-1$). More generally, consider the weighted gcd-sum functions defined by \begin{equation} \label{gcd_weight_def} P_w(n):= \sum_{k=1}^n w(k,n) \gcd(k,n) \qquad (n\in \N), \end{equation} where the weights are functions $w:\N^2 \to \C$. In this paper we evaluate the alternating gcd-sum function $P_{\altern}(n)$, deduce a formula for the function $P_{\bino}(n)$ and investigate other special cases of \eqref{gcd_weight_def}. We also give a formula for the alternating lcm-sum function defined by \begin{equation} \label{lcm_altern_def} L_{\altern}(n):= \sum_{k=1}^n (-1)^{k-1} \lcm[k,n] \qquad (n\in \N). \end{equation} Similar results can be derived for the weighted versions of certain analogs and generalizations of the gcd-sum function, see \cite{Tot2010}, but we confine ourselves to the function \eqref{gcd_weight_def}. %************************* section 2 ******************************************* \section{General results} We first give the following simple result. \begin{proposition} \label{prop_general} i) Let $w:\N^2 \to \C$ be an arbitrary function. Then \begin{equation} \label{gcd_weight_repr} P_w(n)=\sum_{d\mid n} \phi(d) \sum_{j=1}^{n/d} w(dj,n) \qquad (n\in \N). \end{equation} ii) Assume that there is a function $g:(0,1] \to \C$ such that $w(k,n)=g(k/n)$ ($1\le k\le n$) and let $G(n)=\sum_{k=1}^n g(k/n)$ ($n\in \N$). Then \begin{equation} \label{gcd_weight_repr_g} P_w(n)=\sum_{d\mid n} \phi(d) G(n/d) \qquad (n\in \N). \end{equation} \end{proposition} \begin{proof} i) Using Gauss' formula $m=\sum_{d\mid m} \phi(d)$ for $m=\gcd(k,n)$, grouping the terms of \eqref{gcd_weight_def} and denoting $k=dj$ we obtain at once \begin{equation*} P_w(n):= \sum_{k=1}^n w(k,n) \sum_{d\mid \gcd(k,n)} \phi(d)= \sum_{d\mid n} \phi(d) \sum_{j=1}^{n/d} w(dj,n). \end{equation*} ii) Use \eqref{gcd_weight_repr} and that \begin{equation*} \sum_{j=1}^{n/d} w(dj,n)= \sum_{j=1}^{n/d} g(dj/n)= \sum_{j=1}^{n/d} g(j/(n/d))= G(n/d). \end{equation*} \end{proof} For $w(k,n)=1$ we reobtain formula formula \eqref{gcd_convo}. In the next section we investigate other special cases, including those already mentioned in the Introduction. \begin{remark} {\rm Consider the function \begin{equation} \label{rel_prime_def} R_w(n):= \sum_{\substack{k=1\\ \gcd(k,n)=1}}^n w(k,n) \qquad (n\in \N). \end{equation} Then, similar to the proof of i), now with the M\"obius $\mu$ function instead of $\phi$, \begin{equation} \label{rel_prime_repr} R_w(n)= \sum_{k=1}^n w(k,n) \sum_{d\mid \gcd(k,n)} \mu(d)= \sum_{d\mid n} \mu(d) \sum_{j=1}^{n/d} w(dj,n). \end{equation} If condition ii) is satisfied, then we have \begin{equation} \label{rel_prime_repr_g} R_w(n)=\sum_{d\mid n} \mu(d) G(n/d) \qquad (n\in \N). \end{equation} We will also point out some special cases of \eqref{rel_prime_repr} and \eqref{rel_prime_repr_g}.} \end{remark} %************************* section 3 ******************************************* \section{Special cases} \subsection{Alternating gcd-sum function} Let $w(k,n)=(-1)^{k-1}$ ($k,n\in \N$). Then we have the function $P_{\altern}(n)$ defined by \eqref{gcd_altern_def}. \begin{proposition} \label{prop_gcd_altern} Let $n\in \N$ and write $n=2^am$, where $a\in \N_0:=\{0,1,2,\ldots\}$ and $m\in \N$ is odd. Then \begin{equation} \label{gcd_altern_repr} P_{\altern}(n)= \begin{cases} n, & \text{ if $n$ is odd ($a=0$)}; \\ -2^{a-1}aP(m) = -\frac{a}{a+2}P(n), & \text{ if $n$ is even ($a\ge 1$)}. \end{cases} \end{equation} \end{proposition} \begin{proof} Use formula \eqref{gcd_weight_repr}. Here \begin{equation*} S_d(n):= \sum_{j=1}^{n/d} w(dj,n)= \sum_{j=1}^{n/d} (-1)^{dj-1}= - \sum_{j=1}^{n/d} (-1)^{dj}. \end{equation*} If $n$ is odd, then every divisor $d$ of $n$ is also odd and obtain $S_d(n)= - \sum_{j=1}^{n/d} (-1)^j= 1$, where $n/d$ is odd. Hence, $P_{\altern}(n)=\sum_{d\mid n} \phi(d)=n$. Now let $n$ be even and let $d\mid n$. For $d$ odd, $S_d(n)= - \sum_{j=1}^{n/d} (-1)^j=0$, since $n/d$ is even. For $d$ even, $S_d(n)=- \sum_{j=1}^{n/d} 1 = - n/d$. We obtain that \begin{equation*} P_{\altern}(n)= - \sum_{\substack{d\mid n\\ \text{ $d$ even}} } \phi(d) \frac{n}{d} = - \sum_{d\mid n} \phi(d) \frac{n}{d} + \sum_{\substack{d\mid n\\ \text{ $d$ odd}}} \phi(d) \frac{n}{d}, \end{equation*} where the first sum is $P(n)$ (cf. \eqref{gcd_convo}), and the second one is \begin{equation*} \sum_{d\mid m} \phi(d) \frac{2^a m}{d}=2^aP(m). \end{equation*} Using \eqref{P_prime_power}, $P(n)=P(2^a)P(m)=2^{a-1}(a+2)P(m)$ and deduce \begin{equation*} P_{\altern}(n)= - P(n) + 2^aP(m)= P(m)(2^a-2^{a-1}(a+2)) \end{equation*} \begin{equation*} = -2^{a-1}aP(m)= -\frac{a}{a+2}P(n). \end{equation*} \end{proof} \begin{remark} {\rm More generally, consider the polynomial \begin{equation} f_n(x):= \sum_{k=1}^n \gcd(k,n) x^{k-1}, \end{equation} i.e., put $w(k,n)=x^{k-1}$ (formally). Then $f_n(1)= P(n)$, $f_n(-1)= P_{\altern}(n)$ and deduce from Proposition \ref{prop_general}, \begin{equation} f_n(x):= \left(1- x^n\right) \sum_{d\mid n} \frac{\phi(d)x^{d-1}}{1-x^d}. \end{equation}} \end{remark} \subsection{Logarithms as weights} Let \begin{equation} \label{gcd_log_def} P_{\logo}(n):= \sum_{k=1}^n (\log k) \gcd(k,n). \end{equation} \begin{proposition} For every $n\in \N$, \begin{equation} \label{gcd_log_repr} P_{\logo}(n)= P(n)\log n + \sum_{d\mid n} \log (d!/d^d) \phi(n/d). \end{equation} \end{proposition} \begin{proof} Apply formula \eqref{gcd_weight_repr}. For $w(k,n)=\log k$, \begin{equation*} \sum_{j=1}^{n/d} w(dj,n)= \sum_{j=1}^{n/d} \log (dj)= \frac{n}{d}\log d + \log \left(\frac{n}{d}\right)!, \end{equation*} hence \begin{equation*} P_{\logo}(n)= \sum_{d\mid n} \phi(d) \left(\frac{n}{d}\log d + \log \left(\frac{n}{d}\right)!\right), \end{equation*} and a short computation leads to \eqref{gcd_log_repr}. \end{proof} \begin{remark} {\rm Writing the exponential form of \eqref{gcd_log_repr}, \begin{equation} \label{prod_gcd} \prod_{k=1}^n k^{\gcd(k,n)}= n^{P(n)} \prod_{d\mid n} \left(\frac{d!}{d^d}\right)^{\phi(n/d)}. \end{equation} Compare this to the known formula \begin{equation} \prod_{\substack{k=1\\ \gcd(k,n)=1}}^n k = n^{\phi(n)} \prod_{d\mid n} \left(\frac{d!}{d^d}\right)^{\mu(n/d)}, \end{equation} cf. \cite[p.\ 197, Ex.\ 24]{NZM} (OEIS \seqnum{A001783}).} \end{remark} \subsection{Discrete Fourier transform of the gcd's} Consider $w(k,n)=\exp(2\pi ikr/n)$ ($k,n\in \N$), where $r\in \Z$, and denote \begin{equation} \label{gcd_DFT_def} P^{(r)}_{\DFT}(n):= \sum_{k=1}^n \exp(2\pi ikr/n) \gcd(k,n), \end{equation} representing the discrete Fourier transform of the function $f(k)=\gcd(k,n)$ ($k\in \N$). \begin{proposition} For every $n\in \N$, $r\in \Z$, \begin{equation} \label{gcd_DFT_repr} P^{(r)}_{\DFT}(n)= \sum_{d\mid \gcd(n,r)} d\, \phi(n/d). \end{equation} \end{proposition} \begin{proof} Here $\exp(2\pi ikr/n)= g(k/n)$ with $g(x)=\exp(2\pi irx)$. Using formula \eqref{gcd_weight_repr_g} and that \begin{equation*} \sum_{k=1}^n \exp(2\pi irk/n)= \begin{cases} n, & \text{ if $n\mid r$}; \\ 0, & \text{ otherwise}; \end{cases} \end{equation*} we obtain \begin{equation*} P^{(r)}_{\DFT}(n)= \sum_{d\mid n, n/d\mid r } \phi(d) \frac{n}{d}= \sum_{d\mid n, d\mid r} d\phi(n/d). \end{equation*} \end{proof} \begin{remark} {\rm Formula \eqref{gcd_DFT_repr} can be written in the form \begin{equation} \label{gcd_DFT_repr_Raman} P^{(r)}_{\DFT}(n)= \sum_{d\mid n} d c_{n/d}(r), \end{equation} where $c_n(k)$ are the Ramanujan sums. Furthermore, \eqref{gcd_DFT_repr_Raman} can be extended for $r$-even functions. See \cite{Sch2008}, \cite[Prop.\ 2]{TotHau}. Note that in the present treatment we do not need properties of the Ramanujan sums and of $r$-even functions.} \end{remark} For $r=0$ (more generally, in case $n\mid r$) we reobtain from \eqref{gcd_DFT_repr} formula \eqref{gcd_convo}. For $r=1$ we deduce \begin{equation} \label{exp_Euler} \sum_{k=1}^n \exp(2\pi ik/n) \gcd(k,n)= \phi(n) \qquad (n\in \N), \end{equation} which gives by writing the real and the imaginary parts, respectively, \begin{equation} \label{cos_Euler} \sum_{k=1}^n \cos (2\pi k/n) \gcd(k,n)= \phi(n) \qquad (n\in \N), \end{equation} \begin{equation} \label{sin_0} \sum_{k=1}^n \sin(2\pi k/n) \gcd(k,n)= 0 \qquad (n\in \N), \end{equation} similar relations being valid for $\gcd(n,r)=1$. Formulae \eqref{exp_Euler}, \eqref{cos_Euler}, \eqref{sin_0} were pointed out in \cite[Ex.\ 3]{Sch2008}. \subsection{Binomial coefficients as weights} Let $w(k,n)=\binom{n}{k}$ ($k,n\in \N$). Then we have the function $P_{\bino}(n)$ defined by \eqref{gcd_binom_def}. \begin{proposition} For every $n\in \N$, \begin{equation} \label{gcd_binom_repr} P_{\bino}(n)= 2^n \sum_{d\mid n} \frac{\phi(d)}{d} \sum_{\ell=1}^d (-1)^{\ell} \cos^n (\ell\pi/d) -n. \end{equation} \end{proposition} \begin{proof} Let $\varepsilon_r^j=\exp(2\pi ij/r)$ ($1\le j\le r$) denote the $r$-th roots of unity. Using the known identity \begin{equation} \label{binom_id} \sum_{k=0}^{\lfloor n/r \rfloor} \binom{n}{kr} = \frac1{r} \sum_{j=1}^r (1+\varepsilon_r^j)^n = \frac{2^n}{r} \sum_{j=1}^r \cos^n (j\pi/r) \cos (nj\pi/r) \qquad (n,r\in \N), \end{equation} cf. \cite[p.\ 84]{Com1974}, and applying \eqref{gcd_weight_repr} we deduce \begin{equation*} P_{\bino}(n)=\sum_{d\mid n} \phi(d) \sum_{j=1}^{n/d} \binom{n}{dj}= \sum_{d\mid n} \phi(d) \left( \frac{2^n}{d} \sum_{\ell=1}^d \cos^n (\ell\pi/d) \cos (n\ell\pi/d) -1\right) \end{equation*} \begin{equation*} = 2^n \sum_{d\mid n} \frac{\phi(d)}{d} \sum_{\ell=1}^d (-1)^{\ell} \cos^n (\ell\pi/d) - \sum_{d\mid n} \phi(d), \end{equation*} giving \eqref{gcd_binom_repr}. \end{proof} Note that \eqref{rel_prime_repr} and \eqref{binom_id} lead to the following formula for the sequence OEIS \seqnum{A056188}: \begin{equation} \label{rel_prime_binom_repr} R_{\bino}(n):= \sum_{\substack{k=1\\ \gcd(k,n)=1}}^n \binom{n}{k}= 2^n \sum_{d\mid n} \frac{\mu(d)}{d} \sum_{\ell=1}^d (-1)^{\ell} \cos^n (\ell\pi/d) \qquad (n>1). \end{equation} \subsection{Weights concerning the Gamma function} Now let \begin{equation} \label{gcd_gamma_def} P_{\Gammo}(n):= \sum_{k=1}^n \log \Gamma \left(\frac{k}{n} \right) \gcd(k,n), \end{equation} where $\Gamma$ is the Gamma function. \begin{proposition} For every $n\in \N$, \begin{equation} \label{gcd_gamma_repr} P_{\Gammo}(n)= \frac{\log 2\pi}{2} \left(P(n)-n\right) -\frac1{2}n\log n +\frac1{2} \sum_{d\mid n} \phi(d)\log d. \end{equation} \end{proposition} \begin{proof} This follows by \eqref{gcd_weight_repr_g} and by \begin{equation*} \prod_{k=1}^n \Gamma \left(\frac{k}{n} \right) =(2\pi)^{(n-1)/2} n^{-1/2}, \qquad (n\in \N), \end{equation*} which is a consequence of Gauss' multiplication formula. \end{proof} \begin{remark} {\rm \eqref{gcd_gamma_repr} can be written also as \begin{equation} P_{\Gammo}(n)= \frac{\log 2\pi}{2} \left(P(n)-n\right) -\frac1{2} (\phi * \log)(n), \end{equation} where $*$ deotes the Dirichlet convolution. Note that $\phi * \log=\mu *\id *\log = \Lambda *\id$, where $\id(n)=n$ ($n\in \N$) and $\Lambda$ is the von Mangoldt function. Writing the exponential form, \begin{equation} \prod_{k=1}^n \left(\Gamma \left(\frac{k}{n} \right)\right)^{\gcd(k,n)}= (2\pi)^{(P(n)-n)/2} n^{-n/2} \prod_{d\mid n} d^{\phi(d)/2}. \end{equation} Compare this to the following formula given in \cite{SanTot1989}: \begin{equation} \prod_{\substack{k=1\\ \gcd(k,n)=1}}^n \Gamma \left(\frac{k}{n} \right)= \frac{(2\pi)^{\phi(n)/2}}{\exp(\Lambda(n)/2)} =\begin{cases} (2\pi)^{\phi(n)/2}/\sqrt{p}, & n=p^a \ \text{(a prime power)}; \\ (2\pi)^{\phi(n)/2}, & \ \text{otherwise}. \end{cases} \end{equation}} \end{remark} \subsection{Further special cases} It is possible to investigate other special cases, too. As examples we give the next ones with weights regarding, among others, the floor function $\lfloor \DOT \rfloor$, and the saw-tooth function $\psi$ defined as $\psi(x)= x-\lfloor x \rfloor-1/2$ for $x\in \R \setminus \Z$ and $\psi(x)=0$ for $x\in \Z$. \begin{proposition} For every $n\in \N$, \begin{equation} \label{gcd_k_} P_{\id}(n):= \sum_{k=1}^n k \gcd(k,n)= \frac{n}{2}(P(n)+n). \end{equation} \end{proposition} \begin{proposition} For every $n\in \N$ and $\alpha \in \R$, \begin{equation} \label{gcd_floor} P_{\flooro}(n):=\sum_{k=1}^n \left \lfloor \alpha + \frac{k}{n} \right \rfloor \gcd(k,n) = \sum_{d\mid n} \phi(d) \left \lfloor \frac{n\alpha}{d} \right \rfloor. \end{equation} \end{proposition} \begin{proposition} For every $n,r\in \N$, \begin{equation} \label{gcd_saw_tooth} P^{(r)}_{\sawo}(n):= \sum_{k=1}^n \psi(kr/n) \gcd(k,n) = 0. \end{equation} \end{proposition} \begin{proposition} For every $n\in \N, n>1$, \begin{equation} \label{gcd_sin} P_{\sino}(n):= \sum_{k=1}^{n-1} (\log \sin (k\pi/n)) \gcd(k,n)= (\phi*\log)(n) - (\log 2)(P(n)-n). \end{equation} \end{proposition} \begin{proposition} For every $n\in \N$ and $\alpha \in \R$ with $\alpha+k/n \notin \Z$ ($1\le k\le n$), \begin{equation} P_{\coto}(n):= \sum_{k=1}^n \cot \pi(\alpha + k/n) \gcd(k,n) = n\sum_{d\mid n} \frac{\phi(d)}{d} \cot(\pi n\alpha/d). \end{equation} \end{proposition} These follow from Proposition \ref{prop_general} using the following well-known formulae: \begin{equation} \sum_{k=1}^n \left \lfloor \alpha+ \frac{k}{n} \right \rfloor = \left \lfloor n \alpha \right \rfloor, \qquad (n\in \N), \end{equation} \begin{equation} \sum_{k=1}^n \psi(kr/n) = 0 \qquad (n,r\in \N), \end{equation} \begin{equation} \prod_{k=1}^{n-1} \sin (k\pi/n) = \frac{n}{2^{n-1}} \qquad (n\in \N) \end{equation} (for $n=1$ the empty product is $1$), \begin{equation} \sum_{k=1}^n \cot \pi(\alpha+ k/n) = n \cot \pi n \alpha \qquad (n\in \N, \alpha \in \R, \alpha+k/n \notin \Z, 1\le k\le n). \end{equation} \section{The alternating lcm-sum function} Some of the previous results have counterparts for the lcm-sum function (OEIS \seqnum{A051193}) \begin{equation} L(n): =\sum_{k=1}^n \lcm[k,n] = \frac{n}{2} \left(1+\sum_{d\mid n} d\phi(d)\right) \qquad (n\in \N). \end{equation} We consider here the alternating lcm-sum function defined by \eqref{lcm_altern_def} and then the analog of \eqref{prod_gcd}. Let $F(n):=\frac1{n}\sum_{d\mid n} d\phi(d)$. Note that $F(n)=\sum_{k=1}^n (\gcd(k,n))^{-1}$ representing the arithmetic mean of the orders of elements in the cyclic group of order $n$, cf. \cite[p.\ 3]{Tot2010}. Furthermore, let $\beta(n):=(\1*\mu \id)(n)=\prod_{d\mid n}(1-p)$ and let $h(n):=\prod_{k=1}^n k^k$ be the sequence of hyperfactorials (OEIS \seqnum{A002109}). \begin{proposition} Let $n\in \N$. If $n$ is odd, then \begin{equation} \label{lcm_altern_repr_odd} L_{\altern}(n)= \frac{n}{2} \left(1+\sum_{d\mid n} d\mu(d)\tau(n/d) \right)= \frac{n}{2} \left(1+\prod_{p^a\mid \mid n} (a(1-p)+1) \right), \end{equation} where $\tau$ is the divisor function. If $n$ is even of the form $n=2^am$, where $a\ge 1$ and $m\in \N$ is odd, then \begin{equation} \label{lcm_altern_repr_even} L_{\altern}(n)= 2^{a-1} m \left(\frac{2^{2a}-1}{3}m F(m)-1\right) = \frac{n}{2} \left(\frac{2^{2a}-1}{2^{2a+1}+1}n F(n)-1\right). \end{equation} \end{proposition} \begin{proof} Let $id_{-1}(n)=n^{-1}$ and $\1(n)=1$ ($n\in \N$). We have \begin{equation*} L_{\altern}(n)= n \sum_{k=1}^n (-1)^{k-1}k \frac1{\gcd(k,n)} = n \sum_{k=1}^n (-1)^{k-1}k \sum_{d\mid \gcd(k,n)} (\id_{-1}* \mu)(d) \end{equation*} \begin{equation*} = n \sum_{d\mid n} \beta(d) \sum_{j=1}^{n/d} (-1)^{dj-1}j. \end{equation*} Now using that $\sum_{k=1}^n (-1)^{k-1}k=(-1)^{n-1} \lfloor (n+1)/2 \rfloor$ ($n\in \N$) the given formulae are obtained along the same lines with the proof of Proposition \ref{prop_gcd_altern}. \end{proof} \begin{proposition} For every $n\in \N$, \begin{equation} \label{prod_lcm} \left(\prod_{k=1}^n k^{\lcm[k,n]} \right)^{1/n}= \prod_{d\mid n} h(n/d)^{\beta(d)} \left( \prod_{d\mid n} d^{\beta(d)/d} \right)^{n/2} \left( \prod_{d\mid n} d^{\beta(d)/d^2}\right)^{n^2/2}. \end{equation} \end{proposition} \begin{proof} Similar to the proofs of above, \begin{equation*} \sum_{k=1}^n (\log k) \lcm[k,n] = n \sum_{k=1}^n (k\log k) \frac1{\gcd(k,n)} \end{equation*} \begin{equation*} = n \sum_{k=1}^n (k\log k) \sum_{d\mid \gcd(k,n)} (\id_{-1}* \mu)(d) = n \sum_{d\mid n} (\id_{-1}* \mu)(d) \sum_{j=1}^{n/d} jd \log (jd) \end{equation*} \begin{equation*} = n \sum_{d\mid n} \beta(d) \log h(n/d) + \frac{n^2}{2} \sum_{d\mid n} \beta(d) \frac{\log d}{d} + \frac{n^3}{2} \sum_{d\mid n} \beta(d) \frac{\log d}{d^2}, \end{equation*} equivalent to \eqref{prod_lcm}. \end{proof} \begin{thebibliography}{99} \bibitem{Com1974} L.~Comtet, {\it Advanced Combinatorics. The Art of Finite and Infinite Expansions}, D. Reidel Publishing Co., 1974. \bibitem{NZM} I.~Niven, H.~S.~Zuckerman and H.~L.~Montgomery, {\it An Introduction to the Theory of Numbers}, 5th ed., John Wiley \& Sons, 1991. \bibitem{SanTot1989} J.~S\'andor and L. T\'oth, A remark on the gamma function, {\it Elem. Math.} {\bf 44} (1989), 73--76. \bibitem{Sch2008} W.~Schramm, The Fourier transform of functions of the greatest common divisor, {\it Integers} {\bf 8} (2008), \#A50. \bibitem{Tot2010} L.~T\'oth, A survey of gcd-sum functions, {\it J. Integer Sequences} {\bf 13} (2010), \href{http://www.cs.uwaterloo.ca/journals/JIS/VOL13/Toth/toth10.html}{Article 109.8.1}. \bibitem{TotHau} L.~T\'oth and P.~Haukkanen, The discrete Fourier transform of $r$-even functions, submitted, \url{http://arxiv.org/abs/1009.5281v1} \end{thebibliography} \bigskip \hrule \bigskip \noindent 2010 {\it Mathematics Subject Classification}: Primary 11A25; Secondary 05A10, 33B15. \noindent \emph{Keywords:} gcd-sum function, lcm-sum function, Euler's function, M\"obius function, binomial coefficient, Gamma function. \bigskip \hrule \bigskip \noindent (Concerned with sequences \seqnum{A001783}, \seqnum{A002109}, \seqnum{A018804}, \seqnum{A051193}, \seqnum{A056188}, and \seqnum{A159068}.) \bigskip \hrule \bigskip \vspace*{+.1in} \noindent Received May 11 2011; revised version received July 18 2011. Published in {\it Journal of Integer Sequences}, September 5 2011. \bigskip \hrule \bigskip \noindent Return to \htmladdnormallink{Journal of Integer Sequences home page}{http://www.cs.uwaterloo.ca/journals/JIS/}. \vskip .1in \end{document} .