\documentclass[12pt,reqno]{article} \usepackage[usenames]{color} \usepackage{amssymb} \usepackage{graphicx} \usepackage{amscd} \usepackage[colorlinks=true, linkcolor=webgreen, filecolor=webbrown, citecolor=webgreen]{hyperref} \definecolor{webgreen}{rgb}{0,.5,0} \definecolor{webbrown}{rgb}{.6,0,0} \usepackage{color} \usepackage{fullpage} \usepackage{float} \usepackage{psfig} \usepackage{graphics} \usepackage{amsmath} \usepackage{amsthm} \usepackage{amsfonts} \usepackage{latexsym} \usepackage{epsf} \setlength{\textwidth}{6.5in} \setlength{\oddsidemargin}{.1in} \setlength{\evensidemargin}{.1in} \setlength{\topmargin}{-.5in} \setlength{\textheight}{8.9in} \newcommand{\seqnum}[1]{\href{http://oeis.org/#1}{\underline{#1}}} \begin{document} \begin{center} \epsfxsize=4in \leavevmode \epsffile{logo129.eps} \end{center} \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{corollary}[theorem]{Corollary} \newtheorem{lemma}[theorem]{Lemma} \newtheorem{proposition}[theorem]{Proposition} \theoremstyle{definition} \newtheorem{definition}[theorem]{Definition} \newtheorem{example}[theorem]{Example} \newtheorem{conjecture}[theorem]{Conjecture} \theoremstyle{remark} \newtheorem{remark}[theorem]{Remark} \begin{center} \vskip 1cm{\LARGE\bf The 4-Nicol Numbers Having \\ \vskip .1in Five Different Prime Divisors } \vskip 1cm \large {Qiao-Xiao Jin and Min Tang\footnote{Corresponding author. This work was supported by the National Natural Science Foundation of China, Grant No.\ 10901002 and the SF of the Education Department of Anhui Province, Grant No.\ KJ2010A126.}}\\ Department of Mathematics \\ Anhui Normal University\\ Wuhu 241000 \\ P. R. China\\ \href{mailto:tangmin@mail.ahnu.edu.cn}{\tt tangmin@mail.ahnu.edu.cn}\\ \end{center} \vskip .2in \begin{abstract} A positive integer $n$ is called a Nicol number if $n\mid \varphi(n)+\sigma(n)$, and a $t$-Nicol number if $\varphi(n)+\sigma(n)=tn$. In this paper, we show that if $n$ is a 4-Nicol number that has five different prime divisors, then $n=2^{\alpha_{1}}\cdot 3\cdot 5^{\alpha_{3}}\cdot p^{\alpha_{4}}\cdot q^{\alpha_{5}}$, or $n=2^{\alpha_{1}}\cdot 3\cdot 7^{\alpha_{3}}\cdot p^{\alpha_{4}}\cdot q^{\alpha_{5}}$ with $p\leq 29$. \end{abstract} \section{Introduction} For any positive integer $n$, let $\phi(n)$, $\omega(n)$ and $\sigma(n)$ be the Euler function of $n$, the number of prime divisors of $n$ and the sum of divisors of $n$, respectively. We call $n$ is a Nicol number if $n\mid\varphi(n)+\sigma(n)$, and a t-Nicol number if $\varphi(n)+\sigma(n)=tn$. It is well-known that $t\geq 2$, and $n$ is prime if and only if $\varphi(n)+\sigma(n)=2n$. In 1966, Nicol \cite{Nicol} conjectured that Nicol numbers are all even, and proved that if $\alpha$ is such that $p=2^{\alpha-2}\cdot7-1$ is prime, then $n=2^{\alpha}\cdot3\cdot p$ is 3-Nicol number. In 1995, Ming-Zhi Zhang \cite{Zhang} showed that if $n=p^{\alpha}q$ then $n$ cannot be a Nicol number, where $p$ and $q$ are distinct primes and $\alpha$ is a positive integer. In 1997, Lin and Zhang \cite{Lin} showed that if $\omega(n)=2$, then $n$ cannot be a Nicol number. In 2008, Luca and Sandor \cite{Luca} showed that if $n$ is a Nicol number and $\omega(n)=3$, then either $n\in \{560,588,1400\}$ or $n=2^{\alpha}\cdot 3\cdot p$ with $p=2^{\alpha-2}\cdot 7-1$ prime. In 2008, Wang \cite{Wang} studied the Nicol numbers that have four different prime divisors. In 2009, Harris \cite{Harris} showed that the Nicol numbers that have four different prime divisors must be one of the following forms: $1.\quad n=2^{3}\cdot 3^{3}\cdot5^{2}\cdot11$, $2^{4}\cdot 3^{3}\cdot5\cdot11$, $2^{7}\cdot 5\cdot 11\cdot 79$, $2^{3}\cdot 3^{3}\cdot5^{3}\cdot13^{2}$, $2^{2}\cdot 3^{2}\cdot 17\cdot 241$, $2^{2}\cdot 3^{2}\cdot 17^{2}\cdot 2243$; $2.\quad n\in \big\{2^{a}\cdot 3\cdot p_{3}\cdot p_{4} \big| p_{4}=\displaystyle\frac{(7\cdot 2^{a-2}-1)p_{3}+9\cdot 2^{a-2}-1}{p_{3}-(7\cdot 2^{a-2}-1)}$, where $p_{3}$, $p_{4}$ are distinct primes.$\big\}$ Moreover, Harris \cite{Harris} proved that all but finitely many Nicol numbers that have 5 different prime divisors are divisible by 6 and not 9. In this paper, we study the 4-Nicol numbers that have five different prime divisors and obtain the following result: \begin{theorem}\label{thm1} If $n$ is a 4-Nicol number with $\omega(n)=5$, then either $n=2^{\alpha_{1}}3^{\alpha_{2}}5^{\alpha_{3}} p^{\alpha_{4}}q^{\alpha_{5}}$, or $n=2^{\alpha_{1}}3^{\alpha_{2}}7^{\alpha_{3}} p^{\alpha_{4}}q^{\alpha_{5}}$ with $p\leq 29$, where $p$, $q$ are distinct primes, and $\alpha_{i}(i=1,2,\cdots,5)$ are positive integers. \end{theorem} By the Harris result and Theorem \ref{thm1}, we have the following result: \begin{corollary} All but finitely many 4-Nicol numbers with 5 different prime divisors have the form $n=2^{\alpha_{1}}\cdot 3\cdot 5^{\alpha_{3}}\cdot p^{\alpha_{4}}\cdot q^{\alpha_{5}}$, or $n=2^{\alpha_{1}}\cdot 3\cdot 7^{\alpha_{3}}\cdot p^{\alpha_{4}}\cdot q^{\alpha_{5}}$ with $p\leq 29$. \end{corollary} \bigbreak Throughout this paper, let $a$ and $m$ be relatively prime positive integers, the least positive integer $x$ such that $a^{x} \equiv 1 \pmod m$ is called the order of $a$ modulo $m$. We denote the order of $a$ modulo $m$ by $\textnormal {ord}_{m}(a)$. Let $V_{p}(m)$ be the exponent of the highest power of $p$ that divides $m$. \bigbreak \section{Lemmas} The following three lemmas are motivated by the work of Luca and S\'{a}ndor \cite{Luca}. Here we make some minor revisions. \begin{lemma}\label{lem1} Let $a$, $b$ be two natural numbers and $p$ be an odd prime. If $V_{p}(a-1)\geq 1$, then $$V_{p}(a^{b}-1)=V_{p}(b)+V_{p}(a-1).$$\end{lemma} \begin{proof} Let $V_{p}(b)=m$ and $V_{p}(a-1)=n$. We may assume that $b=p^{m}t$ with $p\nmid t$ and $a=1+p^{n}a_{0}$ with $p\nmid a_{0}$. Since $n\geq 1$, we have $$a^{t}=(1+p^{n}a_{0})^{t}=1+C_{t}^{1}p^{n}a_{0}+\cdots+C_{t}^{t}(p^{n}a_{0})^{t}=1+p^{n}c, \quad p\nmid c.$$ Thus $$a^{tp}=(1+p^{n}c)^{p}=1+C_{p}^{1}p^{n}c+\cdots+C_{p}^{p}(p^{n}c)^{p}=1+p^{n+1}a_{1}, \quad p\nmid a_{1}.$$ By induction on $m$, for all $m\geq 0$ we have $a^{b}=a^{tp^{m}}=1+p^{m+n}a_{m}$ with $p\nmid a_{m}$. Hence $$V_{p}(a^{b}-1)=m+n=V_{p}(b)+V_{p}(a-1).$$ This completes the proof of Lemma \ref{lem1}. \end{proof}\vskip 3mm \begin{lemma}\label{lem2} Let $t$ be a natural number and $p$, $q$ be two primes. We have $$V_{p}(q^{t}-1)\leq V_{p}(q^{f}-1)+V_{p}(t),$$ where $f=\textnormal{ord}_{p}(q)$, if $p\neq 2$; and $f=2$, if $p=2$.\end{lemma} \begin{proof} (i) $p=2$. By \cite[Lemma 1]{Luca}, we have $$V_{2}(q^{t}-1)\leq V_{2}(q^{2}-1)+V_{2}(t).$$ (ii) $p>2$. Now consider the following two cases: {\bf Case 1.} $q^{t}\not\equiv 1 \pmod p$. The above inequality is obvious. {\bf Case 2.} $q^{t}\equiv 1 \pmod p$. Then $\textnormal{ord}_{p}(q)\mid t$ and $\textnormal{ord}_{p}(q)\mid p-1$. Let $V_{p}(t)=m$. We may assume that $t=\textnormal{ord}_{p}(q)\cdot p^{m}\cdot k$ with $p\nmid k$. Thus $$\begin{array}{ll} V_{p}(q^{t}-1)& =V_{p}\big((q^{\textnormal{ord}_{p}(q)})^{p^{m}\cdot k}-1\big)\\ &=V_{p}(q^{\textnormal{ord}_{p}(q)}-1)+V_{p}({p^{m}\cdot k})\\ &=V_{p}(q^{\textnormal{ord}_{p}(q)}-1)+m\\ &=V_{p}(q^{\textnormal{ord}_{p}(q)}-1)+V_{p}(t).\end{array}$$ This completes the proof of Lemma \ref{lem2}. \end{proof} \begin{lemma}\label{lem3} Let $n=p_{1}^{\alpha_{1}}p_{2}^{\alpha_{2}}\cdots p_{k}^{\alpha_{k}}$ be the standard factorization of $n$ and $X=\max\{\alpha_{j}\mid j=1,2,\cdots,k\}$. We fix $i\in\{1,\cdots,k\}$ such that $X=\alpha_i$. If $n$ is a Nicol number, then we have $$X-1\leq \sum_{j=1,j\neq i}^k V_{p_{i}}(p_{j}^{f_{j}}-1)+\displaystyle\frac{k-1}{\log{p_{i}}}\log(X+1),$$ where $f_{j}=ord_{p_{i}}(p_{j})$, if $p_{i}\neq 2$; and $f_{j}=2$, if $p_{i}=2$.\end{lemma} \begin{proof} Since $n\mid \phi(n)+\sigma(n)$ and $p_{i}^{X-1}\mid \phi(n)$, we have $$p_{i}^{X-1}\mid \sigma(n)=\prod_{j=1}^k \Big(\displaystyle\frac{p_{j}^{\alpha_{j}+1}-1}{p_{j}-1}\Big).$$ Hence $$p_{i}^{X-1}\Big|\prod_{j=1}^k (p_{j}^{\alpha_{j}+1}-1).$$ The above relation implies that $$X-1\leq \sum_{j=1}^k V_{p_{i}}(p_{j}^{\alpha_{j}+1}-1)=\sum_{j=1,j\neq i}^k V_{p_{i}}(p_{j}^{\alpha_{j}+1}-1).$$ By Lemma \ref{lem2} $$\begin{array}{ll} X-1 &\leq \displaystyle\sum\limits_{j=1,j\neq i}^k V_{p_{i}}(p_{j}^{f_{j}}-1)+\sum\limits_{j=1,j\neq i}^k V_{p_{i}}(\alpha_{j}+1)\\ &\leq \displaystyle\sum\limits_{j=1,j\neq i}^k V_{p_{i}}(p_{j}^{f_{j}}-1)+\sum\limits_{j=1,j\neq i}^k \displaystyle\frac{\log(\alpha_{j}+1)}{\log{p_{i}}} \\ &\leq \displaystyle\sum\limits_{j=1,j\neq i}^k V_{p_{i}}(p_{j}^{f_{j}}-1)+\displaystyle\frac{k-1}{\log{p_{i}}}\log(X+1).\end{array}$$ This completes the proof of Lemma \ref{lem3}. \end{proof} \begin{lemma}\label{lem4} If $n$ is a 4-Nicol number and $\omega(n)=5$, then $n$ must be one of the following three forms: $1.\quad n=2^{\alpha_{1}}\cdot 3^{\alpha_{2}}\cdot 5^{\alpha_{3}}\cdot p^{\alpha_{4}}\cdot q^{\alpha_{5}}$, $p,q$ are distinct primes and $7\leq p2+\sqrt{3}$. By $\displaystyle\frac{n}{\varphi(n)}>\displaystyle\frac{\sigma(n)}{n}=l$, we have $$\displaystyle\frac{n}{\varphi(n)}=\displaystyle\frac{p_{1}}{p_{1}-1}\frac{p_{2}}{p_{2}-1}\frac{p_{3}}{p_{3}-1}\frac{p_{4}}{p_{4}-1} \frac{p_{5}}{p_{5}-1}>l>2+\sqrt{3}.$$ If $p_{2}\geq 5$ then $$\displaystyle\frac{n}{\varphi(n)}=\displaystyle\frac{p_{1}}{p_{1}-1}\frac{p_{2}}{p_{2}-1}\frac{p_{3}}{p_{3}-1} \frac{p_{4}}{p_{4}-1}\frac{p_{5}}{p_{5}-1}\leq \displaystyle2\cdot \frac{5}{4}\cdot \frac{7}{6}\cdot \frac{11}{10}\cdot \frac{13}{12}<2+\sqrt{3},$$ a contradiction. Thus $p_{2}=3$ and $p_{1}=2$. If $p_{3}\geq 13$ then $$\displaystyle\frac{n}{\varphi(n)}=\displaystyle\frac{p_{1}}{p_{1}-1}\frac{p_{2}}{p_{2}-1}\frac{p_{3}}{p_{3}-1} \frac{p_{4}}{p_{4}-1}\frac{p_{5}}{p_{5}-1}\leq \displaystyle2\cdot \frac{3}{2}\cdot \frac{13}{12}\cdot \frac{17}{16}\cdot \frac{19}{18}<2+\sqrt{3},$$ a contradiction, thus $p_{3}\leq 11$. {\bf Case 1.} $p_{3}=7$. Then $p_{4}\leq 29$. In fact, if $p_{4}\geq 31$ then $$\displaystyle\frac{n}{\varphi(n)}=\displaystyle\frac{p_{1}}{p_{1}-1}\frac{p_{2}}{p_{2}-1}\frac{p_{3}}{p_{3}-1} \frac{p_{4}}{p_{4}-1}\frac{p_{5}}{p_{5}-1}\leq \displaystyle2\cdot \frac{3}{2}\cdot \frac{7}{6}\cdot \frac{31}{30}\cdot \frac{37}{36}<2+\sqrt{3},$$ a contradiction. {\bf Case 2.} $p_{3}=11$. Then $p_{4}=13$ and $p_{5}\leq 23$. In fact, if $p_{4}\geq 17$ then $$\displaystyle\frac{n}{\varphi(n)}=\displaystyle\frac{p_{1}}{p_{1}-1}\frac{p_{2}}{p_{2}-1}\frac{p_{3}}{p_{3}-1} \frac{p_{4}}{p_{4}-1}\frac{p_{5}}{p_{5}-1}\leq \displaystyle2\cdot \frac{3}{2}\cdot \frac{11}{10}\cdot \frac{17}{16}\cdot \frac{19}{18}<2+\sqrt{3},$$ a contradiction. If $p_{5}\geq 29$ then $$\displaystyle\frac{n}{\varphi(n)}=\displaystyle\frac{p_{1}}{p_{1}-1}\frac{p_{2}}{p_{2}-1}\frac{p_{3}}{p_{3}-1} \frac{p_{4}}{p_{4}-1}\frac{p_{5}}{p_{5}-1}\leq \displaystyle2\cdot \frac{3}{2}\cdot \frac{11}{10}\cdot \frac{13}{12}\cdot \frac{29}{28}<2+\sqrt{3},$$ a contradiction. This completes the proof of Lemma \ref{lem4}.\end{proof} \section{Proof of Theorem \ref{thm1}} By Lemma \ref{lem4}, it is enough to show that there is no 4-Nicol numbers $n=2^{\alpha_{1}}\cdot 3^{\alpha_{2}}\cdot 11^{\alpha_{3}}\cdot 13^{\alpha_{4}}\cdot p^{\alpha_{5}}$ with $p\leq 23$. Assume that $n=2^{\alpha_{1}}\cdot 3^{\alpha_{2}}\cdot 11^{\alpha_{3}}\cdot 13^{\alpha_{4}}\cdot p^{\alpha_{5}}$ with $p\leq 23$ be a 4-Nicol number, then by $\displaystyle\frac{\varphi(n)}{n}+\displaystyle\frac{\sigma(n)}{n}=4$ we have: $$\begin{array}{ll}2^{\alpha_{1}+6}\cdot 3^{\alpha_{2}+1}\cdot 5\cdot 11^{\alpha_{3}-1}\cdot 13^{\alpha_{4}-1}\cdot p^{\alpha_{5}-1}\cdot (133p+10)\cdot (p-1) \\ =(2^{\alpha_{1}+1}-1)\cdot (3^{\alpha_{2}+1}-1)\cdot (11^{\alpha_{3}+1}-1)\cdot (13^{\alpha_{4}+1}-1)\cdot (p^{\alpha_{5}+1}-1).\end{array}$$ {\bf Case 1.} $p=17$, $n=2^{\alpha_{1}}\cdot 3^{\alpha_{2}}\cdot 11^{\alpha_{3}}\cdot 13^{\alpha_{4}}\cdot 17^{\alpha_{5}}$. Then \begin{align}&2^{\alpha_{1}+10}\cdot 3^{\alpha_{2}+2}\cdot 5\cdot 11^{\alpha_{3}-1}\cdot 13^{\alpha_{4}-1}\cdot 17^{\alpha_{5}-1}\cdot 757\nonumber\\ &=(2^{\alpha_{1}+1}-1)(3^{\alpha_{2}+1}-1)(11^{\alpha_{3}+1}-1)(13^{\alpha_{4}+1}-1)(17^{\alpha_{5}+1}-1).\label{e:1}\end{align} By Lemma \ref{lem3} we have $X\leq 35$. Noting that $$\textnormal{ord}_{757}(2)=756, \textnormal{ord}_{757}(3)=9, \textnormal{ord}_{757}(11)=\textnormal{ord}_{757}(13)=\textnormal{ord}_{757}(17)=189,$$ thus $$757\nmid 2^{\alpha_{1}+1}-1, 757\nmid11^{\alpha_{3}+1}-1, 757\nmid 13^{\alpha_{4}+1}-1, 757\nmid17^{\alpha_{5}+1}-1 .$$ By (\ref{e:1}) we have $757\mid 3^{\alpha_{2}+1}-1$, thus $\alpha_{2}+1=9k, k\in \mathbb{Z}$. By $X\leq 35$, we have $k=1,2,3$. {\bf Subcase 1}: $k=1$, $\alpha_{2}+1=9$. Then $$\begin{array}{ll}2^{\alpha_{1}+9}\cdot 3^{10}\cdot 5\cdot 11^{\alpha_{3}-1}\cdot 13^{\alpha_{4}-2}\cdot 17^{\alpha_{5}-1}\\ =(2^{\alpha_{1}+1}-1)(11^{\alpha_{3}+1}-1)(13^{\alpha_{4}+1}-1)(17^{\alpha_{5}+1}-1).\end{array}$$ $(i)$ $\alpha_{4}=2$. By $\textnormal{ord}_{61}(13)=3$ we have $61\mid 13^{3}-1$, this is impossible. $(ii)$ $\alpha_{4}>2$. Then $13\mid (2^{\alpha_{1}+1}-1)(11^{\alpha_{3}+1}-1)(17^{\alpha_{5}+1}-1)$. On the other hand, we have the following facts: If $13\mid 2^{\alpha_{1}+1}-1$, by $\textnormal{ord}_{13}(2)=12$, thus $12\mid \alpha_{1}+1$, and noting that $\textnormal{ord}_{7}(2)=3$ we have $7\mid 2^{\alpha_{1}+1}-1$, which is impossible. If $13\mid 11^{\alpha_{3}+1}-1$, by $\textnormal{ord}_{13}(11)=12$, thus $12\mid \alpha_{3}+1$, and noting that $\textnormal{ord}_{7}(11)=3$ we have $7\mid 11^{\alpha_{3}+1}-1$, which is impossible. If $13\mid 17^{\alpha_{5}+1}-1$, by $\textnormal{ord}_{13}(17)=6$, thus $6\mid \alpha_{5}+1$, and noting that $\textnormal{ord}_{7}(17)=6$ we have $7\mid 17^{\alpha_{5}+1}-1$, which is impossible. Thus $13\nmid (2^{\alpha_{1}+1}-1)(11^{\alpha_{3}+1}-1)(17^{\alpha_{5}+1}-1)$, a contradiction. {\bf Subcase 2}: $k=2$, $\alpha_{2}+1=18$. By $\textnormal{ord}_{7}(3)=6$, we have $7\mid 3^{18}-1$, thus $7\mid 3^{\alpha_{2}+1}-1$, which contradicts (\ref{e:1}). {\bf Subcase 3}: $k=3$, $\alpha_{2}+1=27$. By $\textnormal{ord}_{757}(3)=9$, we have $757\mid 3^{27}-1$, thus $757\mid 3^{\alpha_{2}+1}-1$, which contradicts (\ref{e:1}). {\bf Case 2.} $p=19$, $n=2^{\alpha_{1}}\cdot 3^{\alpha_{2}}\cdot 11^{\alpha_{3}}\cdot 13^{\alpha_{4}}\cdot 19^{\alpha_{5}}$. Then \begin{align}&2^{\alpha_{1}+7}\cdot 3^{\alpha_{2}+3}\cdot 5\cdot 11^{\alpha_{3}-1}\cdot 13^{\alpha_{4}-1}\cdot 19^{\alpha_{5}-1}\cdot 43\cdot 59\nonumber\\ &=(2^{\alpha_{1}+1}-1)(3^{\alpha_{2}+1}-1)(11^{\alpha_{3}+1}-1)(13^{\alpha_{4}+1}-1)(19^{\alpha_{5}+1}-1).\label{e:2}\end{align} By Lemma \ref{lem3} we have $X\leq 33$. Noting that $$\textnormal{ord}_{59}(2)=\textnormal{ord}_{59}(11)= \textnormal{ord}_{59}(13)=58, \textnormal{ord}_{59}(3)=\textnormal{ord}_{59}(19)=29,$$ we have $$59\nmid2^{\alpha_{1}+1}-1, 59\nmid11^{\alpha_{3}+1}-1, 59\nmid13^{\alpha_{4}+1}-1.$$ By (\ref{e:2}) we have $59\mid 3^{\alpha_{2}+1}-1$ or $59\mid19^{\alpha_{5}+1}-1$. If $59\mid 3^{\alpha_{2}+1}-1$, then $29\mid \alpha_{2}+1$. Since $\textnormal{ord}_{28537}(3)=29$, we have $28537\mid 3^{\alpha_{2}+1}-1$, which contradicts with (\ref{e:2}), thus $59\nmid 3^{\alpha_{2}+1}-1$ . If $59\mid 19^{\alpha_{5}+1}-1$, then $29\mid \alpha_{5}+1$. Since $\textnormal{ord}_{233}(19)=29$, we have $233\mid 19^{\alpha_{5}+1}-1$, which contradicts with (\ref{e:2}), thus $59\nmid 19^{\alpha_{5}+1}-1$. {\bf Case 3.} $p=23$, $n=2^{\alpha_{1}}\cdot 3^{\alpha_{2}}\cdot 11^{\alpha_{3}}\cdot 13^{\alpha_{4}}\cdot 23^{\alpha_{5}}$. Then \begin{align}&2^{\alpha_{1}+7}\cdot 3^{\alpha_{2}+3}\cdot 5\cdot 11^{\alpha_{3}+1}\cdot 13^{\alpha_{4}-1}\cdot 23^{\alpha_{5}-1}\cdot 31\nonumber\\ &=(2^{\alpha_{1}+1}-1)(3^{\alpha_{2}+1}-1)(11^{\alpha_{3}+1}-1)(13^{\alpha_{4}+1}-1)(23^{\alpha_{5}+1}-1).\label{e:3}\end{align} By Lemma \ref{lem3} we have $X\leq 34$. Noting that $$\textnormal{ord}_{31}(2)=5, \textnormal{ord}_{31}(3)= \textnormal{ord}_{31}(11)=\textnormal{ord}_{31}(13)=30, \textnormal{ord}_{31}(23)=10,$$ by $\textnormal{ord}_{31}(3)= \textnormal{ord}_{31}(11)=\textnormal{ord}_{31}(13)=30$, we know that $30\mid \alpha_{i}+1, i=2,3,4$. Noting that $\textnormal{ord}_{61}(3)=10, \textnormal{ord}_{19}(11)=\textnormal{ord}_{61}(13)=3,$ we have $61\mid 3^{\alpha_{2}+1}-1, 19\mid 11^{\alpha_{3}+1}-1, 61\mid 13^{\alpha_{4}+1}-1$. Which contradicts with (\ref{e:3}), then we have $$31\nmid3^{\alpha_{2}+1}-1, 31\nmid11^{\alpha_{3}+1}-1, 31\nmid13^{\alpha_{4}+1}-1.$$ By (\ref{e:3}) we know that $31\mid 23^{\alpha_{5}+1}-1$ or $31\mid 2^{\alpha_{1}+1}-1$. If $31\mid 23^{\alpha_{5}+1}-1$, then by $\textnormal{ord}_{31}(23)=10$, we know that $10\mid \alpha_{5}+1$. Noting that $\textnormal{ord}_{41}(23)=5$ we have $41\mid 23^{\alpha_{5}+1}-1$, which contradicts (\ref{e:3}). If $31\mid 2^{\alpha_{1}+1}-1$, then $\alpha_{1}+1=5k, k\in \mathbb{Z}$. By $X\leq 34$, we have $k=1,2,3,4,5,6$. {\bf Subcase 1}: $k=1$, $\alpha_{1}+1=5$, $n=2^{4}\cdot 3^{\alpha_{2}}\cdot 11^{\alpha_{3}}\cdot 13^{\alpha_{4}}\cdot 23^{\alpha_{5}}$. Put $m=3^{\alpha_{2}}\cdot 11^{\alpha_{3}}\cdot 13^{\alpha_{4}}\cdot 23^{\alpha_{5}}$. Then $$\displaystyle\frac{\sigma(m)}{m}<\frac{m}{\varphi(m)}=\frac{3}{2}\cdot \frac{11}{10}\cdot \frac{13}{12}\cdot \frac{23}{22}=\displaystyle\frac{299}{160}=1.86875.$$ On the other hand, noting that $\varphi(n)+\sigma(n)=4n$, then $8\varphi(m)+31\sigma(m)=64m$, thus $$\displaystyle\frac{\sigma(m)}{m}> 1.9264>1.86875,$$ a contradiction. {\bf Subcase 2:} $k=2$, $\alpha_{1}+1=10$. Thus $$\begin{array}{ll}2^{16}\cdot 3^{\alpha_{2}+2}\cdot 5\cdot 11^{\alpha_{3}}\cdot 13^{\alpha_{4}-1}\cdot 23^{\alpha_{5}-1}\\ =(3^{\alpha_{2}+1}-1)(11^{\alpha_{3}+1}-1)(13^{\alpha_{4}+1}-1)(23^{\alpha_{5}+1}-1).\end{array}$$ Noting that the following facts: {\bf $(i)$} If $2^{\alpha}\mid 3^{\alpha_{2}+1}-1$, then $\alpha\leq 4$. In fact, if $\alpha\geq 5$, then by $\textnormal{ord}_{32}(3)=8$, we have $\alpha_{2}+1=8s,s\in \mathbb{Z}$. Noting that $\textnormal{ord}_{41}(3)=8$, thus $41\mid 3^{\alpha_{2}+1}-1$, this is impossible. {\bf $(ii)$} If $2^{\alpha}\mid 11^{\alpha_{3}+1}-1$, then $\alpha\leq 3$. In fact, if $\alpha\geq 4$, then by $\textnormal{ord}_{16}(11)=4$, we have $\alpha_{3}+1=4s,s\in \mathbb{Z}$. Noting that $\textnormal{ord}_{61}(11)=4$, thus $61\mid 11^{\alpha_{3}+1}-1$, this is impossible. {\bf $(iii)$} If $2^{\alpha}\mid 13^{\alpha_{4}+1}-1$, then $\alpha\leq 3$. In fact, if $\alpha\geq 4$, then by $\textnormal{ord}_{16}(13)=4$, thus $\alpha_{4}+1=4s,s\in \mathbb{Z}$. Noting that $\textnormal{ord}_{7}(13)=2$, thus $7\mid 13^{\alpha_{4}+1}-1$, this is impossible. {\bf $(iv)$} If $2^{\alpha}\mid 23^{\alpha_{5}+1}-1$, then $\alpha\leq 4$. In fact, if $\alpha\geq 5$, then by $\textnormal{ord}_{32}(23)=4$, we have $\alpha_{5}+1=4s,s\in \mathbb{Z}$. Noting that $\textnormal{ord}_{53}(23)=4$, thus $53\mid 23^{\alpha_{5}+1}-1$, this is impossible. Let $$\begin{array}{ll}A&=(3^{\alpha_{2}+1}-1)(11^{\alpha_{3}+1}-1)(13^{\alpha_{4}+1}-1)(23^{\alpha_{5}+1}-1),\\ B&=2^{16}\cdot 3^{\alpha_{2}+2}\cdot 5\cdot 11^{\alpha_{3}}\cdot 13^{\alpha_{4}-1}\cdot 23^{\alpha_{5}-1}.\end{array}$$ We have $V_{2}(A)\leq 14$ and $V_{2}(B)=16$, this is impossible. {\bf Subcase 3}: $k=3$, $\alpha_{1}+1=15$. By $\textnormal{ord}_{7}(2)=3$, we have $7\mid 2^{\alpha_{1}+1}-1$, which contradicts (\ref{e:3}). {\bf Subcase 4}: $k=4$, $\alpha_{1}+1=20$. By $\textnormal{ord}_{41}(2)=20$, we have $41\mid 2^{\alpha_{1}+1}-1$, which contradicts (\ref{e:3}). {\bf Subcase 5}: $k=5, \alpha_{1}+1=25$. By $\textnormal{ord}_{601}(2)=25$, we have $601\mid 2^{\alpha_{1}+1}-1$, which contradicts (\ref{e:3}). {\bf Subcase 6}: $k=6, \alpha_{1}+1=30$. By $\textnormal{ord}_{151}(2)=15$, we have $151\mid 2^{\alpha_{1}+1}-1$, which contradicts (\ref{e:3}). This completes the proof of Theorem \ref{thm1}. \begin{thebibliography}{10} \bibitem{Harris} K. Harris, On the classification of integer n that divide $\varphi(n)+\sigma(n)$, {\it J. Number Theory} {\bf 129} (2009), 2093--2110. \bibitem{Lin} Da-Zheng Lin and Ming-Zhi Zhang, On the divisibility relation $n\mid\varphi(n)+\sigma(n)$, {\it J. Sichuan Daxue Xuebao} {\bf 34} (1997), 121--123. \bibitem{Luca} F. Luca and J. S\'{a}ndor, On a problem of Nicol and Zhang, {\it J. Number Theory} {\bf 128} (2008), 1044--1059. \bibitem{Nicol} C. A. Nicol, Some Diophantine equations involving arithmetic functions, {\it J. Math. Anal. Appl.} {\bf 15} (1966), 154--161. \bibitem{Wang} Wei Wang, The research on Nicol problems, {\it Master Degree Theses of Nanjing Normal University}, 2008. \bibitem{Zhang} Ming-Zhi Zhang, A divisibility problem, {\it J. Sichuan Daxue Xuebao} {\bf 32} (1995), 240--242. \end{thebibliography} \bigskip \hrule \bigskip \noindent 2010 {\it Mathematics Subject Classification}: Primary 11A25. \noindent \emph{Keywords: } Nicol number; Euler's totient function. \bigskip \hrule \bigskip \vspace*{+.1in} \noindent Received April 12 2011; revised version received July 7 2011. Published in {\it Journal of Integer Sequences}, September 4 2011. Revised, April 11 2012. \bigskip \hrule \bigskip \noindent Return to \htmladdnormallink{Journal of Integer Sequences home page}{http://www.cs.uwaterloo.ca/journals/JIS/}. \vskip .1in \end{document} .