\documentclass[12pt,reqno]{article} \usepackage[usenames]{color} \usepackage{amssymb} \usepackage{graphicx} \usepackage{amscd} \usepackage{xspace} \usepackage{pstricks} \usepackage[colorlinks=true, linkcolor=webgreen, filecolor=webbrown, citecolor=webgreen]{hyperref} \definecolor{webgreen}{rgb}{0,.5,0} \definecolor{webbrown}{rgb}{.6,0,0} \usepackage{color} \usepackage{fullpage} \usepackage{float} \usepackage{psfig} \usepackage{graphics,amsmath,amssymb} \usepackage{amsthm} \usepackage{amsfonts} \usepackage{latexsym} \usepackage{epsf} \setlength{\textwidth}{6.5in} \setlength{\oddsidemargin}{.1in} \setlength{\evensidemargin}{.1in} \setlength{\topmargin}{-.5in} \setlength{\textheight}{8.9in} \newcommand{\seqnum}[1]{\href{http://oeis.org/#1}{\underline{#1}}} \begin{document} \begin{center} \epsfxsize=4in \leavevmode\epsffile{logo129.eps} \end{center} \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{corollary}[theorem]{Corollary} \newtheorem{lemma}[theorem]{Lemma} \newtheorem{proposition}[theorem]{Proposition} \theoremstyle{definition} \newtheorem{definition}[theorem]{Definition} \newtheorem{example}[theorem]{Example} \newtheorem{conjecture}[theorem]{Conjecture} \theoremstyle{remark} \newtheorem{remark}[theorem]{Remark} \def\mbf#1{\mathchoice{\hbox{\boldmath $\displaystyle #1$}} {\hbox{\boldmath $\textstyle #1$}} {\hbox{\boldmath $\scriptstyle #1$}} {\hbox{\boldmath $\scriptscriptstyle #1$}}} % mathboldface \def\v{\vert} \def\lr{LRmax\xspace} \def\rr{revert-reciprocal\xspace} \begin{center} \vskip 1cm{\LARGE\bf Lagrange Inversion Counts $\mbf{3\overline{5}241}$-Avoiding \\ \vskip .1in Permutations } \vskip 1cm \large David Callan \\ Department of Statistics \\ University of Wisconsin-Madison \\ 1300 University Ave \\ Madison, WI \ 53706-1532 \\ USA \\ \href{mailto:callan@stat.wisc.edu}{\tt callan@stat.wisc.edu} \end{center} \vskip .2 in \begin{abstract} In a previous paper, we showed that $3\overline{5}241$-avoiding permutations are counted by the unique sequence that starts with a 1 and shifts left under the self-composition transform. The proof uses a complicated bijection. Here we give a much simpler proof based on Lagrange inversion. \end{abstract} \section{Introduction} A permutation avoids the barred pattern $3\overline{5}241$ \cite{eseq06} when the (not necessarily consecutive) pattern 3241 occurs only as part of a 35241 pattern. The composition of two sequences $(a_{n})_{n\ge1}$ and $(b_{n})_{n\ge1}$ is defined by composition of their (ordinary) generating functions. A sequence is unital if its first term is 1. There is a unique unital sequence $(b_{n})_{n\ge1}$ whose composition with itself is equal to its left shift, $(b_{2},b_{3},\ldots)$, the so-called left-shift eigensequence for self-composition. This sequence begins $(b_{n})_{n\ge1}=(1,1,2,6,23,104,531,\ldots)$. In a previous paper \cite{eseq06}, we showed that the counting sequence for $3\overline{5}241$-avoiding permutations is this sequence indexed from 0. More precisely, with $S_{n}(\tau)$ denoting the set of permutations of $[n]$ that avoid the pattern $\tau$, we established \begin{theorem}\label{mainresult} The sequence $(a_{n})_{n\ge1}$ defined by $a_{1}=1$ and, for $n\ge1,\ a_{n+1}=\v\,S_{n}(3\overline{5}241)\,\v$ is the left-shift eigensequence for self-composition. \end{theorem} The proof used a rather complicated bijection. Our objective here is to simplify the proof using Lagrange inversion. We start with the characterization of $3\overline{5}241$-avoiding permutations given in \cite{eseq06}, and recall some notation. Every permutation $\pi$ on $[n]$, considered as a list (or word), has the form $\pi=m_{1}L_{1}m_{2}L_{2} \ldots m_{r}L_{r}$ where $m_{1}0\}$. \section{Acknowledgement} My thanks to a sharp-eyed referee for catching a garbled description of the bijection of Theorem \ref{permAsTree} in the original version. \begin{thebibliography}{9} \bibitem{eseq06}J David Callan, A Combinatorial Interpretation of the Eigensequence for Composition, \emph{J. Integer Seq.}, {\bf 9} (2006), \href{http://www.cs.uwaterloo.ca/journals/JIS/VOL9/Callan/callan96.html} {Article 06.1.4}. \bibitem{ec2} Richard P.~Stanley, \emph{Enumerative Combinatorics Vol.\,2}, Cambridge University Press, 1999. \end{thebibliography} \bigskip \hrule \bigskip \noindent 2010 {\it Mathematics Subject Classification}: 05A15. \noindent \emph{Keywords: } eigensequence, barred pattern, Lagrange inversion. \bigskip \hrule \bigskip \noindent (Concerned with sequence \seqnum{A110447}.) \bigskip \hrule \bigskip \vspace*{+.1in} \noindent Received June 10 2011; revised version received September 26 2011. Published in {\it Journal of Integer Sequences}, October 16 2011. \bigskip \hrule \bigskip \noindent Return to \htmladdnormallink{Journal of Integer Sequences home page}{http://www.math.uwaterloo.ca/JIS/}. \vskip .1in \end{document} .