\documentclass[12pt,reqno]{article} \usepackage[usenames]{color} \usepackage{amssymb} \usepackage{graphicx} \usepackage{amscd} \usepackage[colorlinks=true, linkcolor=webgreen, filecolor=webbrown, citecolor=webgreen]{hyperref} \definecolor{webgreen}{rgb}{0,.5,0} \definecolor{webbrown}{rgb}{.6,0,0} \usepackage{color} \usepackage{fullpage} \usepackage{float} %\usepackage{psfig} \usepackage{graphics,amsmath,amssymb} \usepackage{amsthm} \usepackage{amsfonts} \usepackage{latexsym} \usepackage{epsf} \setlength{\textwidth}{6.5in} \setlength{\oddsidemargin}{.1in} \setlength{\evensidemargin}{.1in} \setlength{\topmargin}{-.5in} \setlength{\textheight}{8.9in} \newcommand{\seqnum}[1]{\href{http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=#1}{\underline{#1}}} \def\N{\mathbb{N}} \def\pp{\pi_\pi} \def\e{\epsilon} \def\t{\theta} \def\a{\alpha} \def\b{\beta} \def\P{\mathbb{P}} \def\d{\delta} \def\s{\sigma} \DeclareMathOperator \Li {Li} \DeclareMathOperator \loglog {loglog} \def\lam{\lambda} \def\s{\sigma} \begin{document} \begin{center} \epsfxsize=4in \leavevmode\epsffile{logo129.eps} \end{center} \begin{center} \vskip 1cm{\LARGE\bf Divisibility by 3 of Even Multiperfect\\ \vskip .1in Numbers of Abundancy 3 and 4} \vskip 1cm \large Kevin A. Broughan and Qizhi Zhou\\ University of Waikato \\ Hamilton, New Zealand \\ \href{mailto:kab@waikato.ac.nz}{\tt kab@waikato.ac.nz} \\ \end{center} \vskip .2 in \begin{abstract} We say a number is flat if it can be written as a non-trivial power of 2 times an odd squarefree number. The power is the ``exponent" and the number of odd primes the ``length". Let $N$ be flat and 4-perfect with exponent $a$ and length $m$. If $a\not\equiv 1\bmod 12$, then $a$ is even. If $a$ is even and $3\nmid N$ then $m$ is also even. If $a\equiv 1\bmod 12$ then $3\mid N$ and $m$ is even. If $N$ is flat and 3-perfect and $3\nmid N$, then if $a\not\equiv 1\bmod 12$, $a$ is even. If $a\equiv 1\bmod 12$ then $m$ is odd. If $N$ is flat and 3 or 4-perfect then it is divisible by at least one Mersenne prime, but not all odd prime divisors are Mersenne. We also give some conditions for the divisibility by 3 of an arbitrary even 4-perfect number. \end{abstract} \newtheorem{theorem}{Theorem} \newtheorem{corollary}[theorem]{Corollary} \newtheorem{lemma}[theorem]{Lemma} \newtheorem{proposition}[theorem]{Proposition} \newtheorem{conjecture}[theorem]{Conjecture} \newtheorem{defin}[theorem]{Definition} \newenvironment{definition}{\begin{defin}\normalfont\quad}{\end{defin}} \newtheorem{examp}[theorem]{Example} \newenvironment{example}{\begin{examp}\normalfont\quad}{\end{examp}} \newtheorem{rema}[theorem]{Remark} \newenvironment{remark}{\begin{rema}\normalfont\quad}{\end{rema}} %------------------------------------------------------------------------------ \def\a{\alpha} \def\b{\beta} \def\lam{\lambda} \def\z{\zeta} \def\h{\frac{1}{2}} \def\g{\gamma} \def\G{\Gamma} \def\p{\partial} \def\s{\sigma} \def\d{\delta} \def\e{\epsilon} \def\c{\overline} \def\t{\theta} \def\sh{\textstyle{\frac{1}{2}}} \def\Ln#1{\langle #1 \rangle} \def\pp{P_+} \def\pq{P_-} %\begin{article} %\bigskip %\large \section{Introduction} We say a natural number $N$ is multiperfect of abundancy $k$ (or $k$-perfect) if $\sigma(N)=kN, (k \ge 2)$, where $\sigma(N)$ denotes the sum of all of the divisors of $N$. A perfect number is a multiperfect number of abundancy 2.\par A number of writers have taken an interest in the presence or absence of divisibility by 3 for classes of multiperfect numbers. Carmichael \cite{Carmichael-2} showed that an even multiperfect number with exactly 4 primes must be divisible by 3, and that there are only two of these numbers, one with abundancy 3 and the other with abundancy 4. If the abundancy is 3 then the number is $c_3:=2^9\cdot 3\cdot 11\cdot 31$, and if the abundancy is 4 then the number is $d_1:=2^5\cdot 3^3\cdot 5\cdot 7$. Kishore \cite{Kishore-3, Kishore-4} and also Hagis \cite{Hagis-3} showed that any odd perfect number not divisible by 3 must have at least 11 different prime factors. We also have the immediate relationship that if $3\nmid N$, $N$ is 3-perfect if and only if $3N$ is 4-perfect. Now consider the table of all known multiperfect numbers of abundancy 3: \begin{eqnarray*} c_1 &=& 2^3\cdot 3 \cdot 5,\\ c_2 &=& 2^5\cdot 3 \cdot 7,\\ c_3 &=& 2^9\cdot 3\cdot 11\cdot 31,\\ c_4 &=& 2^8\cdot 5\cdot 7\cdot 19\cdot 37\cdot 73,\\ c_5 &=& 2^{13}\cdot 3\cdot 11\cdot 43\cdot 127,\\ c_6 &=& 2^{14}\cdot 5\cdot 7\cdot 19\cdot 31\cdot 151.\\ \end{eqnarray*} \begin{definition} We say a number $N$ is {\bf flat} if its odd part is square free, i.e. if $N$ can be written in the form $N=2^a\cdot p_1\cdots p_m$ where $a\ge 0$, $m\ge 0$ and $p_1q$ then $\exp_p q > 1$. If $\exp_p q >1$ and $\alpha >1$ then $\exp_p q \mid \alpha$ if and only if $p\mid q^{\alpha}-1$. \medskip \begin{definition} If $p$ is a prime and $N$ a natural number let $v_p(N)$ be the exponent of the highest power of $p$ dividing $N$, or 0 if $p$ does not divide $N$. \end{definition} %----------------------------------------------------------------------------- We are able to get the following result from Theorems 94 and 95 in Nagell \cite[pp.\ 164--166]{Nagell} or Pomerance \cite[p.\ 269]{Pomerance-3}: %Lemma 11 \begin{lemma}\label{lem:3.2} If $p$ is an odd prime and $x>1$ an integer with $p\mid x-1$ then for every $e\ge 1$ $$ v_p\left(\frac{x^e-1}{x-1}\right)=v_p(e). $$ \end{lemma} %----------------------------------------------------------------------- %Lemma 12 \begin{lemma}(Prime factorization of $\s(q^e)$) \label{lem:3.3} Let $i\ge 1$ and $p$ be any odd prime, $q$ a prime with $q\ge 2$ such that $p \neq q$. Then (1) if $\exp_p q = 1$ then $p\mid \s(q^{e})$ if and only if $p\mid e+1$, and (2) if $\exp_p q > 1$ then $p\mid \s(q^{e})$ if and only if $\exp_p q\mid e+1$. \end{lemma} \begin{proof} (1) Now $\exp_p q=1$ if and only if $p\mid q-1$. By Lemma \ref{lem:3.2} $$ v_p(\s(q^e))=v_p(\frac{q^{e+1}-1}{q-1})=v_p(e+1) $$ and both implications of this part follow directly. (2) If $\exp_p q > 1$ we have $p\nmid q-1$ so $q-1\not\equiv 0\bmod p$. Hence $p\mid \s(q^e) \Leftrightarrow p\mid q^{e+1}-1 \Leftrightarrow \exp_p q\mid e+1$. \end{proof} %-------------------------------------------------------------------- Now we are able to prove Theorem \ref{thm:3}.\par \begin{proof} (A) If $N=2^a\cdot p_1^{\a_1}\cdots p_m^{\a_m}$ and $a$ is odd, then since $$ (2^{a+1}-1)\s(p_1^{\a_1})\cdots\s(p_m^{\a_m})= 2^{a+2}p_1^{\a_1}\cdots p_m^{\a_m} $$ and $3\mid 2^{a+1}-1$, one of the $p_i$ must be 3, so $3\mid N$. (B) If one of the $\a_i$ is odd and the corresponding $p_i\equiv 2\bmod 3$, then, since $2\mid \a_i+1$, by Lemma \ref{lem:0.1}, $1+p_i\mid \s(p_i^{\a_i})$, so again $3\mid N$. (C) Let us suppose that 3 does not divide $N$. Let $b=p_1^{\a_1}\cdots p_m^{\a_m}$ so $3\nmid b$. And, because of point (A) we may assume that $a$ is even. Then the hypothesis $\s(N)=4N$ gives $$ (2^{a+1}-1)\s(b)=2^{a+2} b $$ which implies $$ \s(b)=2b+\frac{2b}{2^{a+1}-1}. $$ Suppose $b\equiv 2\bmod 3$. Then since each divisor $d$ of $b$ satisfies $3\nmid d$, each sum $b/d+d\equiv 0\bmod 3$. But from the equation above, $\s(b)\equiv 0\bmod 2$, so, since each divisor of $b$ is odd, $b$ has an even number of divisors. Arrange them in pairs $\{b/d,d\}$ and add to show that $3\mid \s(b)$ leading to $3\mid b$, a contradiction. Since $3\nmid b$, by what we have just shown this means $b\equiv 1\bmod 3$. Then by the given hypothesis and definition of $b$, there is a $p_i\equiv 1\bmod 3$ and, by (B) if any of the $p_i\equiv 2\bmod 3$, then its corresponding $\a_i$ is even (otherwise $3\mid b$). Now consider the equation $\s(N)=4N$: $$ (2^{a+1}-1) \s(p_1^{\a_1})\cdots \s(p_m^{\a_m})= 2^{a+2}\cdot b $$ with $a$ even, and take this equation modulo 3. This leads to $$ (1+\a_1)\cdots(1+\a_l)\equiv 1\bmod 3, $$ where, if needed, we have reordered the $\a_i$ to place the non-empty set of those with $p_i\equiv 1\bmod 3$ first, and $l$ is the number of primes congruent to 1 modulo 3. But given an $\a_i\equiv 2\bmod 3$ we obtain $0\equiv 1\bmod 3$, a contradiction which implies therefore $3\mid b$, so finally $3\mid N$. For the necessary condition assume $N=2^{2a}\cdot p_1^{\a_1}\cdots p_m^{\a_m}$ and $3\mid N$. Because $2^{2a+1}-1\equiv 1\bmod 3$ we must have an $i$ with $3\mid \s(p_i^{\a_i})$. If $\exp_3 p_i=1 \Leftrightarrow p_i\equiv 1\bmod 3$, we must have, by Lemma \ref{lem:3.3}, $3\mid \a_i + 1$ so $\a_i\equiv 2 \mod 3$ which is (C). If however $\exp_3 p_i=2$ then $3\nmid p_i-1$ and $3\mid p_i^2-1$, so we must have $2\mid \a_i+1$ so $\a_i$ is odd and $p_i\equiv 2\bmod 3$, which is (B). \end{proof} %------------------------------------------------ %Lemma 13 \begin{lemma} \label{lemma13} Let $N$ be a flat 3-perfect integer, not divisible by 3 and whose exponent $a$ is even. Let $N=2^a p_1 p_2 \cdots p_m$ be its standard prime factorization. (A) There exists an unique $j \in \{1, 2, \cdots, m\}$ such that 3 divides $p_j +1$. (B) For each $i$, $1 \le i < j$, $p_i +1$ divides $N$. \end{lemma} \begin{proof} (A) We have $(2^{a+1}-1)(p_1 +1)(p_2 +1)\cdots (p_m +1)=3N$. Since $a$ is even, $3 \nmid 2^{a+1}-1$. Since $3 \nmid N$, there is an unique $j \in \{1,2,\cdots, m\}$ such that $3 \mid p_j +1$. (B) By point (A), $p_i +1$ is coprime with 3 and $p_i +1$ divides $\sigma(N)=3N$. Thus $p_i +1 \mid N$. \end{proof} %--------------------------------------------------- \section{Mersenne Prime Divisors} Recall the statement of Theorem \ref{thm:4}: Let $N$ be even, flat and multiperfect. (A) If the multiplicity is not greater than 4 then $N$ is divisible by at least one Mersenne prime. (B) If all odd prime divisors of $N$ are Mersenne primes then $N$ is perfect. \begin{proof} Let $N=2^a p_1\cdots p_m$ with $m\ge 1$. (A) We can assume that $3\nmid N$. If the multiplicity $k=2$ then $N=2^{p-1} M_p$ where $p$ is prime and $M_p$ is a Mersenne prime. Let $k=4$. Write $$(2^{a+1}-1)(p_1 +1)\cdots (p_m +1)=2^{a+2}p_1 \cdots p_m.$$ If $p_1$ is not Mersenne, the least odd divisor of $p_1 +1$ is an odd prime $q < p_1$ which divides $p_1 \cdots p_m$ and, therefore, divides $N$. This contradicts the fact that $p_1$ is the least odd divisor of $N$. Thus $p_1$ is Mersenne. Now let $k=3$. If $a$ is odd, write $$ \left(\frac{2^{a+1}-1}{3}\right)(p_1+1)\cdots (p_m+1)= 2^a p_1\cdots p_m. $$ Like in the case $k=4$, we deduce from this equation that $p_1$ is Mersenne. If $a$ is even, by Lemma \ref{lemma13}, there exists an unique $j$ such that 3 divides $p_j +1$. Then either 3 is the unique odd prime divisor of $p_j +1$, either there is an odd prime $q_1 >3$ which divides $p_j +1$. In the latter case let us suppose that no prime factor of $N$ less than $p_j$ is Mersenne. Then there exists an odd prime factor $q_2$ of $q_1 +1$. By Lemma \ref{lemma13}, $q_2 \mid q_1 +1 \mid N$. Thus, $q_2 < q_1$ is an another odd prime factor of $N$ less than $p_j$. Repeating this construction we get a decreasing sequence $(q_n)$ of odd prime divisors of $N$. This is absurd. In the former case, since $p_1< p_2\cdots < p_m$ and $p_m\nmid p_i+1$ for $1\le i\le m$, we must have $p_m\mid 2^{a+1}-1$, so, assuming $j_o