\documentclass[12pt,reqno]{article} %\DeclareMathOperator{\ind}{ind} \usepackage[usenames]{color} \usepackage{amssymb} \usepackage{graphicx} \usepackage{amscd} \usepackage[colorlinks=true, linkcolor=webgreen, filecolor=webbrown, citecolor=webgreen]{hyperref} \definecolor{webgreen}{rgb}{0,.5,0} \definecolor{webbrown}{rgb}{.6,0,0} \usepackage{color} \usepackage{fullpage} \usepackage{float} \usepackage{psfig} \usepackage{graphics,amsmath,amssymb} \usepackage{amsthm} \usepackage{amsfonts} \usepackage{latexsym} \usepackage{epsf} \setlength{\textwidth}{6.5in} \setlength{\oddsidemargin}{.1in} \setlength{\evensidemargin}{.1in} \setlength{\topmargin}{-.5in} \setlength{\textheight}{8.9in} \newcommand{\seqnum}[1]{\href{http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=#1}{\underline{#1}}} \begin{document} \begin{center} \epsfxsize=4in \leavevmode\epsffile{logo129.eps} \end{center} \newtheorem{theorem}{Theorem} \newtheorem{corollary}[theorem]{Corollary} \newtheorem{lemma}[theorem]{Lemma} \newtheorem{proposition}[theorem]{Proposition} \newtheorem{conjecture}[theorem]{Conjecture} \newtheorem{defin}[theorem]{Definition} \newenvironment{definition}{\begin{defin}\normalfont\quad}{\end{defin}} \newtheorem{examp}[theorem]{Example} \newenvironment{example}{\begin{examp}\normalfont\quad}{\end{examp}} \newtheorem{rema}[theorem]{Remark} \newenvironment{remark}{\begin{rema}\normalfont\quad}{\end{rema}} \newtheorem{thm}{Theorem}[] \newtheorem{conj}{Conjecture}[] \newtheorem{lem}{Lemma}[section] \theoremstyle{remark} \newtheorem{rem}{Remark}[section] \theoremstyle{definition} \newtheorem{alg}{Algorithm}[section] \begin{center} \vskip 1cm{\LARGE\bf Verifying Two Conjectures on Generalized\\ \vskip .1in Elite Primes} \vskip 1cm \large Xiaoqin Li \footnote{Research supported by NSF of China Grant 10726074.} \\ Mathematics Department \\ Anhui Normal University\\ Wuhu 241000, Anhui\\ People's Republic of China\\ \href{mailto:qinlxss@163.com}{\tt qinlxss@163.com}\\ \href{mailto:lxq623@mail.ahnu.edu.cn }{\tt lxq623@mail.ahnu.edu.cn}\\ \end{center} \vskip .2 in \begin{abstract} A prime number $p$ is called $b${\it-elite} if only finitely many generalized Fermat numbers $F_{b,n}=b^{2^n}+1$ are quadratic residues modulo $p$. Let $p$ be a prime. Write $p-1=2^rh$ with $r\geq 0$ and $h$ odd. Define the length of the \textit{b-Fermat period of $p$} to be the minimal natural number $L$ such that $F_{b,r+L}\equiv F_{b,r}$ (mod $p$). Recently M\"uller and Reinhart derived three conjectures on $b${\it-elite} primes, two of them being the following. (1) For every natural number $b>1$ there is a $b${\it-elite} prime. (2) There are generalized elite primes with elite periods of arbitrarily large lengths. We extend M\"uller and Reinhart's observations and computational results to further support above two conjectures. We show that Conjecture 1 is true for $b\leq10^{13}$ and that for every possible length $1\leq L\leq40$ there actually exists a generalized elite prime with elite period length $L$. \end{abstract} \section{Introduction} The numbers of the form \begin{eqnarray*} F_{b,n}=b^{2^n}+1 \end{eqnarray*} are called generalized Fermat numbers (GFNs) for natural numbers $b$ and $n$. The definition generalizes the usual Fermat numbers $F_{n}=2^{2^n}+1$, which were named after Pierre Simon de Fermat (1601-1665). A lot of research has been done on Fermat numbers and their generalization since then (see \cite{bjorn, dubner0, dubner, krizek}). In 1986 Aigner \cite{aigner} called a prime number $p$ {\it elite} if only finitely many Fermat numbers $F_{n}$ are quadratic residues modulo $p$, i.e., there is an integer index $m$ for which all $F_{n}$ with $n>m$ are quadratic non-residues modulo $p$. He discovered only 14 such prime numbers less than $3.5\cdot 10^7$. More computational effort yielded all 27 elites up to $2.5\cdot 10^{12}$ together with some 60 much larger numbers \cite{ chaumont, chaumont1, muller0}. These prime numbers are summarized in sequence \seqnum{A102742} of Sloane's \textit{On-Line Encyclopedia of Integer Sequences}~\cite{sloane}. M\"uller and Reinhart \cite{muller} generalized Aigner's concept of elite primes in analogy to that of Fermat numbers. \newtheorem{def1}{Definition}[section]\label{def} \begin{def1} (\cite[Definition 1.1]{muller}). Let $p$ be a prime number and $b\geq 2$ be a natural number. Then $p$ is called a $b${\it-elite} prime if there exists a natural number $m$, such that for all $n\geq m$ the GFNs $F_{b,n}$ are quadratic non-residues modulo $p$. \end{def1} By the recurrence relation \begin{eqnarray}\label{rec} F_{b,n+1}=\left(F_{b,n}-1\right)^2+1, \end{eqnarray} one sees that the congruences $F_{b,n}$ (mod $p$) eventually become periodic. Write $p-1=2^rh$ with $r\geq 0$ and $h$ odd. Then this period -- M\"uller and Reinhart \cite{muller} called it \textit{b-Fermat period of $p$} -- begins at latest with the term $F_{b,r}$. So there has to be a minimal natural number $L$ such that \begin{equation} \label{rec1} F_{b,r+L}\equiv F_{b,r} \,(\bmod\, p) , \end{equation} which they~\cite{muller} call the \textit{length of the b-Fermat period} of $p$. The terms $F_{b,n} \,(\bmod\, p)$ for $n=r,\ldots,r+L-1$ are the \textit{b-Fermat remainders} of $p$. Therefore, a prime number $p$ is $b${\it-elite} if and only if all $L$~$b$\textit{-Fermat remainders} are quadratic non-residues modulo $p$. It is moreover known that for all $p$ it is a necessary condition for eliteness with $L>1$ that $L$ is an even number smaller than $\frac{p+1}{4}$ (compare~\cite{muller}). M\"uller and Reinhart \cite{muller} gave fundamental observations on $b${\it-elite} primes and presented selected computational results from which three conjectures are derived, two of them being the following. \begin{conj}\label{con1}\cite[Conjecture 4.1]{muller} For every natural number $b>1$ there is a $b${\it-elite} prime. \end{conj} \begin{conj}\label{con2}\cite[Conjecture 4.2]{muller} There are generalized elite primes with elite periods of arbitrarily large lengths. \end{conj} Concerning Conjecture~\ref{con1}, M\"uller and Reinhart \cite{muller} observed that most of the bases $b$ actually have the prime $3$ or $5$ as $b${\it-elite} -- only the bases $b\equiv 0$ (mod 15) do not belong to one of these two ``trivial" families. Conjecture~\ref{con2} seems to be supported by their computations. They \cite{muller} proved the following Lemma \ref{lem11}. \begin{lem}\label{lem11} For every \begin{equation}\label{L1} L\in \mathcal{L}_1=\{1,2,4,6,8,10,12\}, \end{equation} there is a generalized elite prime $p<10^4$ with elite period length $L$. \end{lem} The main purpose of this paper is to extend M\"uller and Reinhart's observations and computational results to give further support to the two conjectures above. We state our main results as the following two Theorems. \begin{thm}\label{thm1} Conjecture 1 is true for $11$ be an integer, and let $p=2^{\,r}\cdot h+1$ be a prime number with $r\geq 1$ and $h$ odd. In this section, we will give an algorithm to test the $b$-eliteness of $p$. Let $\left(\frac{*}{*}\right)$ denote the Legendre symbol. Our algorithm is based on the following criterion. \begin{equation}\label{Criterion_my} F_{b,n} ~\text{is a quadratic non-residue modulo}~ p ~\text{if and only if}~\left(\frac{F_{b,n}}{p}\right)=-1. \end{equation} Given $b\geq 2$ and prime $p=2^{\,r}\cdot h+1$ with $h$ odd, we check whether \begin{equation}\label{rec2} \left(\frac{F_{b,n}}{p}\right)=-1 \end{equation} holds for $n=r,r+1,r+2,\ldots$ consecutively, where $F_{b,n}\, (\bmod\,p)$ are computed recursively by (\ref{rec}). If (\ref{rec2}) does not hold for some $n\geq r$, then $p$ is not $b${\it-elite}. If (\ref{rec2}) holds for $r\leq n\leq r+L-1$, then $p$ is $b${\it-elite}, where $L$ is the \textit{length of the b-Fermat period} of $p$, namely the least positive integer such that (\ref{rec1}) holds. Now we describe our Algorithm \ref{alg1} in the following pseudocode. \begin{alg}\label{alg1} Testing the $b$-eliteness of prime $p$; \noindent\{Input $b\geq 2$ and prime $p$\} \noindent\{Determine whether $p$ is $b${\it-elite} or not; if $p$ is $b${\it-elite} then output the length $L$\} \noindent {\bf Begin} Finding $r$ and $h$ such that $p= 2^{r}h+1$ with $h$ odd; $f_{b}\leftarrow F_{b,r} \,(\bmod\, p)$; $f \leftarrow f_{b}$; $L\leftarrow 0$; $elite \leftarrow~ True$; {\bf Repeat} Computing $\left(\frac{f_{b}}{p}\right)$ by \cite[Algorithm 2.3.5]{CP} (cf. also \cite[\S11.3]{Rosen}); \hspace{4mm} {\bf If } $\left(\frac{f_{b}}{p}\right)\neq -1$ {\bf Then } $elite \leftarrow False$ {\bf Else} \hspace{8mm} {\bf begin} $f_{b}\leftarrow(f_{b}-1)^{2}+1 \,(\bmod\, p)$; $L\leftarrow L+1$ {\bf end}; {\bf Until } ({\bf not} $elite$) {\bf or }$(f_b=f)$; {\bf If} $elite$ {\bf Then} output $L$ {\bf Else} output ``$p$ is not $b$-elite'' \noindent {\bf End}. \end{alg} \begin{rem} The prime $2$ is not $b${\it-elite} to any $b\geq 2$ since there is no quadratic non-residue modulo $2$. So here and for the rest of this paper, we only need to consider odd primes $p$. \end{rem} \begin{rem}\label{compare} Let $q$ be a prime and $c$ be a positive integer with $q \nmid c$. Denote by ord$_{q}(c)$ the multiplicative order of $c \,(\bmod\,p)$. M\"uller \cite{muller0} gave an eliteness testing algorithm \cite[Algorithm 3.1]{muller0} for the base $b=2$ based on the following criterion \cite[Theorem 2.1]{muller0}. \begin{equation}\label{Criterion_muller} F_{2,n}~ \text{is a quadratic non-residue modulo}~ p ~\text{if and only if}~ 2^{\,r} \mid \text{ord}_{p}(F_{2,n}). \end{equation} To check whether $2^{\,r}$ divides ord$_{p}(F_{2,n})$ for $n=r,r+1,r+2,\ldots$, the algorithm computes $F_{2,n}^{2^{k}h} \,(\bmod\, p)$ for $k=0,1,\ldots,k_{0}$, where $k_{0}=\min \{0\leq k \leq r: F_{2,n}^{2^{k}h}\equiv 1 \,(\bmod\, p)\}$. It is well-known \cite[\S 2.1.2]{CP} (see also \cite[Theorem 4.9]{Rosen}) that it takes $$O(\ln s\cdot \ln^{2}p)$$ bit operations to compute the modular exponentiation $F_{2,n}^{\,s}\,(\bmod\, p)$. With our method, we compute the Legendre symbol $\left(\frac{F_{2,n}}{p}\right)$, which requires only $$O(\ln^{2}p)$$ bit operations \cite[\S 2.3]{CP} (see also \cite[Corollary 11.12.1 and Exerice 11.3.16]{Rosen}). So, for testing the $b$-eliteness of $p$, using criterion (\ref{Criterion_my}) is faster than using criterion (\ref{Criterion_muller}). \end{rem} \section{Proof of Theorem 1} Throughout this section, let $\mathbb{N} = \{0,1,2,3,\ldots \}$ be the set of all natural numbers. Let $\mathcal{B}\subset \mathcal{A}$ be two sets. We denote by $|\mathcal{A}|$ the number of elements in $\mathcal{A}$, and $$\mathcal{A} - \mathcal{B}=\{c:c\in \mathcal{A}, c\not\in\mathcal{B}\}.$$ Let $p$ be an odd prime. Define the sets $$\mathcal{A}_{p}= \{0,1,2,\ldots, p-1\};$$ $$\mathcal{B}_{p}= \begin{cases} \{b(\geq 2)\in \mathcal{A}_{p}: p \text{ is}~ b \text{\it-elite} \}\cup\{1\}, &\text{if} ~p ~\text{ is} ~(p-1) \text{{\it-elite}};\\ \{b(\geq 2)\in \mathcal{A}_{p}: p \text{ is}~ b \text{\it-elite} \},&\text{if} ~p ~\text{ is not} ~(p-1) \text{{\it-elite}}; \end{cases}$$ and $$ \mathcal{R}_{p}=\mathcal{A}_{p} - \mathcal{B}_{p}.$$ To prove Theorem \ref{thm1}, we need nine Lemmata. \begin{lem}\label{lem1}\cite[Observation 2.2,2.3]{muller} Let $p$ be an odd prime number, $b$ be a natural number. If $p$ is $b${\it-elite}, then (1) $p$ is $(b+pk)${\it-elite} for $k\in \{a,a+1,a+2,\ldots\}$, where $a=\lceil \frac{-b}{p}\rceil$; (2) $p$ is $(p-b)${\it-elite} if $2\leq b< p$. Moreover, the Fermat remainders and the respective length of the Fermat period for the bases $b+pk$ and $p-b$ are the same. \end{lem} By Lemma \ref{lem1} we have \begin{lem}\label{lem4} Let $p$ be an odd prime and $\;b\,(>1)\in\mathbb{N}$. Then $$p \text{ is } b \text{-elite if and only if } b\; (\bmod\; p)\in \mathcal{B}_{p}.$$ \end{lem} \begin{lem}\cite[Consequence 2.10]{muller}\label{lem0} We have $\mathcal{R}_{3}=\mathcal{R}_{5}=\{0\}$. \end{lem} \begin{lem}\label{lem2}\cite[Theorem 2.13]{muller} Let $b$ be a natural number and $p$ be an odd prime number. Then $p$ is $b${\it-elite} with $L=2$ if and only if $p\equiv 7 \,(\bmod\, 12)$ and either $b^2+1\equiv b \, (\bmod\, p)$ with $\left(\frac{b}{p}\right)=-1$ or $b^2+1\equiv -b\,(\bmod\, p)$ with $\left(\frac{b}{p}\right)=1$. \end{lem} \begin{lem}\label{lem3} We have $\mathcal{R}_{7}=\{0,1,6\}$. \end{lem} \begin{proof} Let $k\in \{0,1,2,3,4,5,6\}$. Then $$ k^{2}+1\; (\text{mod } 7)= \begin{cases} k, \noindent\hspace{8mm} &if ~~k= 3,5;\\ 7-k,\noindent\hspace{4mm} &if ~~k= 2,4;\\ 1, \noindent\hspace{8mm} &if ~~k=0 ;\\ 2, \noindent\hspace{8mm} &if ~~k= 1,6;\\ \end{cases}$$ and $$ \left(\frac{k}{7}\right)= \begin{cases} 1,\noindent\hspace{8mm} &if ~~k= 1,2,4;\\ 0,\noindent\hspace{8mm} &if ~~k= 0;\\ -1, \noindent\hspace{4mm} &if ~~k= 3,5,6;\\ \end{cases}$$ Based on Lemma~\ref{lem2}, we have $\mathcal{B}_{7}=\{2,3,4,5\}.$ Thus the Lemma follows. \end{proof} Using Algorithm~\ref{alg1}, we can easily get the following Lemma~\ref{lem6} and Lemma~\ref{lem61}. \begin{lem}\label{lem6} We have $$\mathcal{R}_{11}=\{0,2,3,4,5,6,7,8,9\}; \mathcal{R}_{13}=\{0,2,3,4,6,7,9,10,11\};$$ $$\mathcal{R}_{19}=\{0,2,3,4,5,6,9,10,13,14,15,16,17\};$$ $$\mathcal{R}_{17}=\mathcal{A}_{17} \text{ and }\mathcal{R}_{23}=\mathcal{A}_{23}.$$ \end{lem} \begin{lem}\label{lem61} Let $p<1000$ be an odd prime. Then $$|\mathcal{R}_p|< \frac12|\mathcal{A}_p| \text{ if and only if } p\in\{3,5,7,41,641\},$$ where $$\mathcal{R}_{41}=\{0,1,3,9,14,27,32,38,40\}$$ and $\mathcal{R}_{641}= \{0,1,2,4,5,8,10,16,20,21,25,29,31,32,40,42,50,58,61,62,64,67,77,$ ~~~~~~~~~~~$80,84,100,105,116,122,124,125,128,129,134,141,145,153,154,155,$ ~~~~~~~~~~~$159,160,168,177,199,200,210,221,232,241,243,244,248,250,256,258,$ ~~~~~~~~~~~$268,282,287,290,305,306,308,310,318,320,321,323,331,333,335,336,$ ~~~~~~~~~~~$351,354,359,373,383,385,391,393,397,398,400,409,420,431,441,442,$ ~~~~~~~~~~~$464,473,481,482,486,487,488,496,500,507,512,513,516,517,519,525,$ ~~~~~~~~~~~$536,541,557,561,564,574,577,579,580,583,591,599,601,609,610,612,$ ~~~~~~~~~~~$616,620,621,625,631,633,636,637,639,640\}.$ \end{lem} \begin{rem} In fact, the two results ``$\mathcal{R}_{17}=\mathcal{A}_{17}$" and ``$\mathcal{R}_{23}=\mathcal{A}_{23}$" were already given by M\"uller and Reinhart~\cite{muller} where they are immediate consequences of Theorem 2.15 and Theorem 2.16. By Lemma \ref{lem6} and Lemma \ref{lem1}, the primes $17$ and $23$ are not $b${\it-elite} to any natural number $b\geq 2$. \end{rem} Let \begin{equation}\label{m} m=3\cdot5\cdot7\cdot11\cdot13\cdot19\cdot41\cdot641=7497575085. \end{equation} Applying the Chinese Remainder Theorem, it is easy to compute the set \begin{equation}\label{setR} \mathcal{R}=\left\{0\leq b1)\in \mathbb{N}$, and let $m$ be given as in (\ref{m}). Then there is a $b${\it-elite} prime $p\in \{3,5,7,11,13,19,41,641\}$ $\text{ if and only if } b \,(\bmod\, p) \in \mathcal{B}_p \text{ for some } p\in\{3,5,7,11,13,19,41,641\}$ $\text{ if and only if } b \,(\bmod\, m) \not\in \mathcal{\mathcal{R}}.$ \end{lem} From Lemma \ref{lem38}, we see that Conjecture \ref{con1} is already true for those bases $b$ such that $b \,(\bmod\, m) \not\in \mathcal{\mathcal{R}}$. Thus we only need to consider the bases $b$ with $b \,(\bmod\, m) \in \mathcal{\mathcal{R}}.$ \begin{lem}\label{lem39} For every base $1\overline{P}$ {\bf Then Begin} $\overline{P}\leftarrow p$; $b\leftarrow b'$ {\bf End} \hspace{16mm} {\bf end~~~~~~~~~~Else} \hspace{16mm}{\bf begin} $p\leftarrow $ the next prime $>p$; \hspace{20mm} {\bf If} ($p=41$) or ($p=641$) {\bf then} $p\leftarrow $ the next prime $>p$ \hspace{16mm}{\bf end} \hspace{8mm} {\bf Until} $Found$ {\bf Or} $(p>maxp)$; \hspace{8mm} {\bf If} not $Found$ {\bf Then} \hspace{12mm} {\bf begin} output ``the lemma fails at $b'$, enlarge $maxp$ and try again''; exit \hspace{12mm} {\bf end}; \hspace{8mm} $i \leftarrow i+1$; $b' \leftarrow u+b_i$; \hspace{4mm} {\bf until} $(i>R)$ or $(b'>B_2)$; \hspace{4mm} $u \leftarrow u+m$; {\bf Until} $u >B_2$; Output $\overline{P}$ and $b$; \noindent {\bf End}; \end{alg} The Delphi program ran about $105$ hours on a PC AMD 3000+/2.0G to find $$\overline{P}(1, 10^{10}),\;\overline{P}(10^{10}, 10^{11}),\;\overline{P}(10^{11}, 10^{12}), $$ and $$\overline{P}(i\cdot 10^{12}, (i+1)\cdot 10^{12}),\; \text{for}\; i=1,2,\ldots,9.$$ Then by (\ref{PB2}) we get $\overline{P}(B)$ for $B=10^{10}, 10^{11}, 10^{12}, 10^{13}$; see Table \ref{table1}, where $b$ is the first base with $P_b=\overline{P}(B)$. As a result we have $$\overline{P}(10^{13})=472166881,$$ which means that for every base $112$.\} \noindent {\bf Begin} $p\leftarrow 3$; {\bf Repeat} Finding $r$ and $h$ such that $p= 2^{r}h+1$ with $h$ odd; $g \leftarrow $~primitive root $\bmod ~p$; \hspace{8mm} {\bf For} $i \leftarrow 0$ {\bf To} $h $ {\bf Do} $tested_{i} \leftarrow ~ False$; $periodstart\leftarrow 0$; \hspace{8mm} {\bf repeat} $index\leftarrow ~periodstart$; $ elite \leftarrow True$; $L\leftarrow 0 $; \hspace{12mm} {\bf Repeat} $tested_{index} \leftarrow ~True$; {\bf If }$elite$ {\bf Then} \hspace{18mm}{\bf begin } $f \leftarrow g^{2^{r}*index}+1 \,(\bmod\, p)$; \hspace{20mm}Computing $\left(\frac{f}{p}\right)$ by \cite[Algorithm 2.3.5]{CP} (cf. also \cite[\S11.3]{Rosen}); \hspace{20mm} {\bf If} $\left(\frac{f}{p}\right)\neq -1$ {\bf Then} $elite \leftarrow~ False$; \hspace{18mm}{\bf end; } \hspace{16mm} $index \leftarrow index*2 \,(\bmod\,h)$; $L\leftarrow L+1$ ; \hspace{12mm} {\bf Until} $(index=periodstart)$; \hspace{12mm} {\bf If} $elite$ {\bf and} $(L>12)$ {\bf Then} output $p~\text{and}~L$; \hspace{12mm} {\bf While} $tested_{periodstart}$ {\bf Do} $periodstart\leftarrow~ periodstart+1$; \hspace{8mm} {\bf until} $( periodstart=h)$; \hspace{8mm} $p\leftarrow $ the next prime $>p$ ; {\bf Until} $p > Bound$ \noindent {\bf End}. \end{alg} The Dephi program ran about $53$ hours to compute all elite periods of every elite prime $p<10^7$, and find some elite period lengths $L\in\mathcal{L}_2.$ For every $L\in\mathcal{L}_2$, we summarize $P(L)$ and the smallest $b$ to which $P(L)$ is elite with length $L$ in Table~\ref{table3}. The Lemma follows. \end{proof} \begin{table}[H] \caption{The function $P(L)$ for $L\in\mathcal{L}_2$}\label{table3} \begin{center}\begin{tabular}{|c|r|r|r|r|r|r|r|r|r|r|r|} \hline $L$ & 14 & 16 & 18 & 20 & 22 & 24& 26 & 28& 30& 36\\ \hline $P(L)$ & 32251 & 30841 & 17443 & 36901 & 50543 & 688297 & 180247 & 117973 & 796387 & 742073 \\ \hline$ b $ & 247 & 75 &726 & 298 & 182& 2935& 6143 & 432 & 27867& 5369 \\ \hline \end{tabular} \end{center} \end{table} \begin{rem} The smallest base $b$ in Table~\ref{table3} can be easily obtained by using Algorithm \ref{alg1} to test the $b$-eliteness of $P(L)$ for $b= 2,3,\ldots,\frac{P(L)-1}{2}$ consecutively until the length of the elite period is found to be $L$. \end{rem} \begin{rem} There are no generalized elite primes $p<10^7$ with $L=32$ or 34 or $L>36$. \end{rem} In the following Table~\ref{table4}, we list the factorization of $2^{\frac{L}{2}}+1$ and the factorization of $P(L)-1$ for $L\in\mathcal{L}_3=\{2,4,6,8,10,12,14,16,18,20,22,24,26,28,30,36\}$ \begin{table}[H] \caption{The factorizations of $2^{\frac{L}{2}}+1$ and of $P(L)-1$ for $L\in\mathcal{L}_3$ }\label{table4} \begin{center}\begin{tabular}{|c|r|r|r|} \hline $L$ & $P(L)$ & \text{The factorization of} $2^{\frac{L}{2}}+1$ & \text{The factorization of} $P(L)-1$ \\ \hline 2 & 7 & 3 & $2\cdot3$ \\ 4 & 41 & 5 & $2^3\cdot5$ \\ 6 & 199 & $3^2$ & $2\cdot3\cdot11$ \\ 8 & 409 & 17 & $2^3\cdot3\cdot17$ \\ 10 & 331 & $3\cdot11$ & $2\cdot3\cdot5\cdot11$ \\ 12 & 3121 & $5\cdot13$ & $2^4\cdot3\cdot5\cdot13$ \\ 14 & 32251 & $3\cdot43$ & $2\cdot3\cdot5^3\cdot43$ \\ 16 & 30841 & 257 & $2^3\cdot3\cdot5\cdot257$ \\ 18 & 17443 & $3^3\cdot19$ & $2\cdot3^3\cdot17\cdot19$ \\ 20 & 36901 & $5^2\cdot41$ & $2^2\cdot3^2\cdot5^2\cdot41$ \\ 22 & 50543 & $3\cdot683$ & $2\cdot37\cdot683$ \\ 24 & 688297 & $17\cdot241$ & $2^3\cdot3\cdot7\cdot17\cdot241$ \\ 26 & 180247 & $3\cdot2731$ & $2\cdot3\cdot11\cdot2731$ \\ 28 & 117973 & $5\cdot29\cdot113$ & $2^2\cdot3^2\cdot29\cdot113$ \\ 30 & 796387 & $3^2\cdot11\cdot331$ & $2\cdot3\cdot331\cdot401$ \\ 36 & 742073 & $5\cdot13\cdot37\cdot109$ & $2^3\cdot23\cdot37\cdot109$ \\ \hline \end{tabular} \end{center} \end{table} Let $L$ be even. Define $$q_L= \max\{\text{prime}\,q: q\mid2^{\frac{L}{2}}+1\}.$$ Then for every $L\in\mathcal{L}_3$, we find that, \begin{equation}\label{rec3} q_L \mid (P(L)-1). \end{equation} Based on~(\ref{rec3}), we try to find some generalized elite primes $p$ with elite period lengths 32,34,38 and 40. The method is as follows (taking $L=32$ for example). Since $2^{\frac{L}{2}}+1=2^{16}+1= 2^{2^4}+1=65537=F_4$, we have $q_{32}=65537$. In order to find the elite prime $p$ with length 32, we consider primes $p\,(p>10^7)$ which can be written in the form $p=65537k+1$ with $k$ an integer. Using Algorithm \ref{alg2}, we compute all the elite periods of these elite primes consecutively until the length of the elite period is $L$. As a result we find that prime $47710937$ is $b${\it-elite} with $L=32$, where $ b=62792$ and $47710936=2^3\cdot7\cdot13\cdot65537$. In Table~\ref{table5}, for $L=32,34,38$ and 40, we tabulate the prime $p$, the base $b$ to which $p$ is elite with length $L$. \begin{table}[H] \caption{ Elite primes $p$ with length $L=32,34,38$ and 40}\label{table5} \begin{center}\begin{tabular}{|c|r|r|r|r|} \hline $L$ & $p$ & $b$ & \text{The factorization of} $2^{\frac{L}{2}}+1$ & \text{The factorization of} $p-1$ \\ \hline 32 & 47710937 & 62792 & 65537 & $2^3\cdot7\cdot13\cdot65537$ \\ 34 & 51118471 & 106257 & $3\cdot43691$ & $2\cdot3^2\cdot5\cdot13\cdot43691$ \\ 38 & 78643351 & 661362 & $3\cdot174763 $ & $2\cdot3^2\cdot5^2\cdot174763$ \\ 40 & 100663393 & 54712 & $17\cdot61681$ & $2^5\cdot3\cdot17\cdot61681$ \\ \hline \end{tabular} \end{center} \end{table} \begin{rem} For every $L\in\{32,34,38,40\}$, the prime $p$ we find in Table~\ref{table5} may be larger than $P(L)$. \end{rem} From Table~\ref{table5}, we have the following Lemma~\ref{lem44}. \begin{lem}\label{lem44} For every $$L\in\{32,34,38,40\},$$ there is a generalized elite prime $p\leq 100663393$ with elite period length $L$. \end{lem} Theorem \ref{thm2} follows from Lemma \ref{lem11}, Lemma \ref{lem43} and Lemma \ref{lem44}. We have known that for each even $L\leq 40$, there is a generalized elite prime $p$ with elite period length $L$ such that $q_L \mid (p-1).$ But it is still an open problem whether for every even $L$ there is a generalized elite prime $p$ with elite period length $L$ such that $q_L \mid (p-1).$ \section{Acknowledgement} We thank the referee for kind and helpful comments that improve the presentation of the paper. \begin{thebibliography}{99} \bibitem{aigner} A. Aigner, \"Uber Primzahlen, nach denen (fast) alle Fermatzahlen quadratische Nichtreste sind. \textit{Monatsh. Math.} \textbf{101} (1986), 85--93. \bibitem{bjorn} A. Bj\"orn and H. Riesel, Factors of generalized Fermat numbers. \textit{Math. Comp.} \textbf{67} (1998), 441--446. \bibitem{chaumont} A. Chaumont and T. M\"uller, All elite primes up to 250 billion. \textit{J. Integer Seq.} \textbf{9} (2006), Article 06.3.8. \bibitem{chaumont1} A. Chaumont, J. Leicht, T. M\"uller and A. Reinhart, The continuing search for large elite primes. \textit{Int. J. Number Theory.} \textbf{5} (2009), 209--218. \bibitem{CP} R. Crandall and C. Pomerance, \textit{Prime Numbers, a Computational Perspective}, 2nd ed., Springer-Verlag, 2005. %\MR{2156291 (2006a:11005)} \bibitem{dubner0} H. Dubner and Y. Gallot, Distribution of generalized Fermat prime numbers. \textit{Math. Comp.} \textbf{71} (2001), 825--832. \bibitem{dubner} H. Dubner and W. Keller, Factors of generalized Fermat numbers. \textit{Math. Comp.} \textbf{64} (1995), 397--405. \bibitem{krizek} M. K\v r\'i\v zek, F. Luca and L. Somer, \textit{17 Lectures on Fermat numbers. From Number Theory to Geometry}, Springer, 2001. \bibitem{muller0} T. M\"uller, Searching for large elite primes. \textit{Experiment. Math.} \textbf{15.2} (2006), 183--186. \bibitem{muller} T.M\"uller and Andreas Reinhart, On generalized elite primes. \textit{J. Integer Seq.} \textbf{11} (2008), Article 08.7.25. \bibitem{Press} H. Press, A. Teukolsky, T. Vetterling and P. Flannery, \textit{Numerical Recipes in C++. The Art of Computer Programming}, Cambridge University Press, 2002. \bibitem{Rosen} H. Kenneth Rosen, \textit {Elementary Number Theory and its Applications}, Addison-Wesley, Fourth edition, 2000. \bibitem{sloane} N. J. A. Sloane, Online Encyclopedia of Integer Sequences (OEIS). Electronically published at: \href{http://www.research.att.com/~njas/sequences/}{http://www.research.att.com/\symbol{126}njas/sequences/} \end{thebibliography} \bigskip \hrule \bigskip \noindent 2000 {\it Mathematics Subject Classification}: Primary 11Y16; Secondary 11A15, 11A41, 11Y55. \noindent \emph{Keywords: } generalized elite primes, generalized Fermat numbers, $b$-Fermat periods. \bigskip \hrule \bigskip \noindent (Concerned with sequence \seqnum{A102742}.) \bigskip \hrule \bigskip \noindent Received January 5 2009; revised version received June 4 2009. Appeared in {\it Journal of Integer Sequences}, June 20 2009. \bigskip \hrule \bigskip \noindent Return to \htmladdnormallink{Journal of Integer Sequences home page}{http://www.cs.uwaterloo.ca/journals/JIS/}. \vskip .1in \end{document}%Wednesday, April 8, 2009 at 15:47 .