\documentclass[12pt,reqno]{article} \usepackage[usenames]{color} \usepackage{amssymb} \usepackage{graphicx} \usepackage{amscd} \usepackage[colorlinks=true, linkcolor=webgreen, filecolor=webbrown, citecolor=webgreen]{hyperref} \definecolor{webgreen}{rgb}{0,.5,0} \definecolor{webbrown}{rgb}{.6,0,0} \usepackage{color} \usepackage{fullpage} \usepackage{float} \usepackage{psfig} \usepackage{graphics,amsmath,amssymb} \usepackage{amsthm} \usepackage{amsfonts} \usepackage{latexsym} \usepackage{epsf} \setlength{\textwidth}{6.5in} \setlength{\oddsidemargin}{.1in} \setlength{\evensidemargin}{.1in} \setlength{\topmargin}{-.5in} \setlength{\textheight}{8.9in} \newcommand{\seqnum}[1]{\href{http://oeis.org/#1}{\underline{#1}}} \begin{document} \newtheorem{theorem}{Theorem} \newtheorem{corollary}[theorem]{Corollary} \newtheorem{lemma}[theorem]{Lemma} \newtheorem{proposition}[theorem]{Proposition} \newtheorem{conjecture}[theorem]{Conjecture} \newtheorem{defin}[theorem]{Definition} \newenvironment{definition}{\begin{defin}\normalfont\quad}{\end{defin}} \newtheorem{examp}[theorem]{Example} \newenvironment{example}{\begin{examp}\normalfont\quad}{\end{examp}} \newtheorem{rema}[theorem]{Remark} \newenvironment{remark}{\begin{rema}\normalfont\quad}{\end{rema}} %%%%%%%%%%%%%%%%%%%%%%%% Author's conventions start ####################### \def\glqq{,\,\!\!,} \def\grqq{`\,\!`} \def\dstyle#1{$\displaystyle #1 $} \def\dx{d_x} \def\genSt#1{generalized Stirling numbers of the #1 kind\ } \def\genSts{generalized Stirling numbers\ } \def\Stirs{Stirling numbers} \def\Stirtris{Stirling triangles\ } \def\Stfs{Stirling numbers of the first kind\ } \def\Stss{Stirling numbers of the second kind\ } \def\Stfknm{{s(k;n,m)}} \def\Stsknm{{S(k;n,m)}} \def\Stfnm{$s(n,m)$\ } \def\Stsnm{$S(n,m)$\ } \def\Stfknmset{$\{s(k;n,m)\}$} \def\Stsknmset{$\{S(k;n,m)\}$} \def\Stsnmset{$\{S(n,m)\}$} \def\Stfnmset{$\{S(n,m)\}$} \def\Stsktri{${\bf S}(k)$} \def\Stfktri{${\bf s}(k)$} \def\noin{\noindent} \def\pn{\par\noindent} \def\ps{\par\smallskip} \def\psn{\par\smallskip\noindent} \def\pbn{\par\bigskip\noindent} \def\Beq{\begin{equation}} \def\Eeq{\end{equation}} \def\Beqarray{\begin{eqnarray}} \def\Eeqarray{\end{eqnarray}} \def\sspgeq{\,\geq} \def\sspleq{\, \leq \,} \def\sspkl{\, < \,} \def\sspgr{\, > \,} \def\sspeq{\, =\,} \def\speq{\ =\ } \def\sspdef{\, :=\,} \def\spdef{\ :=\ } \def\sspfed{\, =:\,} \def\sspin{\, \in \,} \def\spp{\ +\ } \def\spm{\ -\ } \def\sspp{\, +\ } \def\sspm{\, -\ } \def\sspto{\,\to\,} \def\sspneq{\, \neq \,} \def\sspequiv{\,\equiv\,} \def\binomial#1#2{{#1} \choose {#2}} \def\DnAMS#1#2{\frac{d{#1}}{d{#2}}} \def\lprod{\prod\llap {\raise 8pt\hbox{$\leftarrow \thinspace$}}} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%% Author's conventions end %%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{center} \epsfxsize=4in \leavevmode\epsffile{logo129.eps} \end{center} %\newtheorem{theorem}{Theorem} %\newtheorem{corollary}[theorem]{Corollary} %\newtheorem{lemma}[theorem]{Lemma} %\newtheorem{proposition}[theorem]{Proposition} %\newtheorem{conjecture}[theorem]{Conjecture} %\newtheorem{defin}[theorem]{Definition} %\newenvironment{definition}{\begin{defin}\normalfont\quad}{\end{defin}} %\newtheorem{examp}[theorem]{Example} %\newenvironment{example}{\begin{examp}\normalfont\quad}{\end{examp}} %\newtheorem{rema}[theorem]{Remark} %\newenvironment{remark}{\begin{rema}\normalfont\quad}{\end{rema}} \newtheorem{note}[theorem]{Note} \newenvironment{Note}{\begin{note}\normalfont\quad}{\end{note}} \vbox {\vspace{6mm}} \begin{center} \vskip 1cm{\Large \bf Combinatorial Interpretation of Generalized \\ \vskip .1in Stirling Numbers}\\ \vskip 1cm \large Wolfdieter Lang \\ Institut f\"ur Theoretische Physik \\ Universit\"at Karlsruhe \\ D-76128 Karlsruhe \\ Germany\\ \href{mailto:wolfdieter.lang@particle.uni-karlsruhe.de}{\tt wolfdieter.lang@particle.uni-karlsruhe.de} \end{center} \vskip .2in \begin{abstract} A combinatorial interpretation of the earlier studied generalized \Stirs, emerging in a normal ordering problem and its inversion, is given. It involves unordered forests of certain types of labeled trees. Partition number arrays related to such forests are also presented. \end{abstract} \section{Introduction and Summary} The \genSt{second} \Stsknm, $k\in \mathbb Z,\ n,m \in \mathbb N_0$, appear in the normal ordering of powers $(x^k\,\dx)^n$ according to \Beq\label{(1.1)} (x^k\,\dx)^n\speq \sum_{m=1}^n\,S(k;n,m)\, x^{m+(k-1)\,n}\,\dx^{\ m}\ \ . \Eeq In the inverse problem the \genSt{first} \Stfknm\ enter as \Beq\label{(1.2)} x^{kn}\,\dx^{\ n}\speq \sum_{m=1}^{n} s(k;n,m)\, x^{(k-1)(n-m)}\,(x^k\,\dx)^m \, . \Eeq These numbers coincide for $k=1$ with the ordinary \Stirs. The author \cite{WL} has previously investigated the $k-$families of number triangles \Stsktri\ and \Stfktri.\footnote{In this reference the notation is different, namely $S2$ and $S1$ are used for $S$ and $s$, respectively. The associated number triangles $s2$ and $s1$ will not appear in the present work.} For given $k$ the recurrence relations are: \Beq\label{(1.3)} S(k;n,m) \speq ((k-1)(n-1)+m)\,S(k;n-1,m) \spp S(k;n-1,m-1)\ \Eeq and \Beq\label{(1.4)} s(k;n,m)\speq -[(k-1)\,m+n-1]\,s(k;n-1,m)\spp s(k;n-1,m-1)\ , \Eeq with the triangle conditions: \Stsknm $\sspeq 0$ for $n