\documentclass[12pt,reqno]{article} \usepackage[usenames]{color} \usepackage{amssymb} \usepackage{graphicx} \usepackage{amscd} \usepackage[colorlinks=true, linkcolor=webgreen, filecolor=webbrown, citecolor=webgreen]{hyperref} \definecolor{webgreen}{rgb}{0,.5,0} \definecolor{webbrown}{rgb}{.6,0,0} \usepackage{color} \usepackage{fullpage} \usepackage{float} \usepackage{psfig} \usepackage{graphics,amsmath,amssymb} \usepackage{amsthm} \usepackage{amsfonts} \usepackage{latexsym} \usepackage{epsf} \setlength{\textwidth}{6.5in} \setlength{\oddsidemargin}{.1in} \setlength{\evensidemargin}{.1in} \setlength{\topmargin}{-.5in} \setlength{\textheight}{8.9in} \newcommand{\seqnum}[1]{\href{http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=#1}{\underline{#1}}} \begin{document} \begin{center} \epsfxsize=4in \leavevmode\epsffile{logo129.eps} \end{center} \begin{center} \vskip 1cm{\LARGE\bf On Multiple Sums of Products of \\ \vskip .1in Lucas Numbers } \vskip 1cm \large Jaroslav Seibert and Pavel Trojovsk\'y \\ University Hradec Kr\'alov\'e \\ Department of Mathematics \\ Rokitansk\'eho 62 \\ 500 03 Hradec Kr\'alov\'e \\ Czech Republic \\ \href{mailto:pavel.trojovsky@uhk.cz}{\tt pavel.trojovsky@uhk.cz} \end{center} \vskip .2 in \begin{abstract} This paper studies some sums of products of the Lucas numbers. They are a generalization of the sums of the Lucas numbers, which were studied another authors. These sums are related to the denominator of the generating function of the $k$-th powers of the Fibonacci numbers. We considered a special case for an even positive integer $k$ in the previous paper and now we generalize this result to an arbitrary positive integer $k$. These sums are expressed as the sum of the binomial and Fibonomial coefficients. The proofs of the main theorems are based on special inverse formulas. \end{abstract} \newtheorem{theorem}{Theorem} \newtheorem{corollary}[theorem]{Corollary} \newtheorem{lemma}[theorem]{Lemma} \newtheorem{proposition}[theorem]{Proposition} \newtheorem{conjecture}[theorem]{Conjecture} \newtheorem{rem}[theorem]{Remark} \newtheoremstyle{defi}%name {10pt} % space above {10pt} % space below {\rm} % bofy font {\parindent} % ident - empty=no indent, \parindent= paragraph indent {\bf} % thm head font {. } % punctuation after thm head { } % space after thm head: `` ``=normal \newline=linebreak {} % thm head specification \theoremstyle{defi} \newtheorem{definition}[theorem]{Definition} \def\proofname{\indent {\sl Proof.}} \newcommand{\fbinom}[2]{ { #1 \brack #2 } } \newcommand{\gbinom}[2]{ \left\{ #1 \atop #2 \right\} } \section{Introduction} \medskip Generating functions are very helpful in finding of relations for sequences of integers. Some authors found miscellaneous identities for the Fibonacci numbers $F_n$, defined by recurrence relation $F_{n+2}=F_n+F_{n+1}$, with $F_0=0$, $F_1=1$, and the Lucas numbers $L_n$, defined by the same recurrence but with the initial conditions $L_0=2$, $L_1=1$, by manipulation with their generating functions. Our approach is rather different in this paper. In 1718 DeMoivre found the generating function of the Fibonacci numbers $F_n$ and used it for deriving the closed form $F_n=\frac{1}{\sqrt5}(\alpha^n-\beta^n)$, with $\alpha=\frac12(1+\sqrt5)$ and $\beta=\frac12(1-\sqrt5)$ (similarly the formula $L_n=\alpha^n+\beta^n$ holds for the Lucas numbers). In 1957 S.~W.~Golomb \cite{Go2} found the generating function for the square of $F_n$ and this result started the effort to find a recurrence or a closed form for the generating function $f_k(x) = \sum_{n=0}^{\infty} F_n^k x^n$ of the $k$-th powers of the Fibonacci numbers. Riordan \cite{Ri6} found a general recurrence for $f_k(x)$. Carlitz \cite{Ca1}, Horadam \cite{Ho4} and Mansour \cite{Ma0} presented some generalizations of Riordan's results and found similar recurrences for the generating functions of powers of any \hbox{second--order} recurrence sequences. Horadam gave some closed forms for the numerator and the denominator of this generating function. From his results follows, for example \begin{equation} f_k(x) = \frac{ \sum_{i=0}^{k} \sum_{j=0}^i (-1)^{\frac{j(j+1)}2}\fbinom{k+1}{j}\; F_{i-j}^k \; x^i } { \sum_{i=0}^{k+1} (-1)^{\frac{i(i+1)}2} \fbinom{k+1}{i}\; x^i}~, \label{eq: R1} %\tag{1} \end{equation} where $\fbinom{n}{k}$ are the Fibonomial coefficients defined for any nonnegative integers $n$ and $k$ by $$ \fbinom{n}{k}=\prod_{i=0}^{k-1} \frac{F_{n-i}}{F_{i+1}} = \frac{F_n F_{n-1}\cdots F_{n-k+1}}{F_1 F_2\cdots F_{k}}~, $$ with $\fbinom{n}{0}=1$ and $\fbinom{n}{k}=0$ for $n1$. \end{definition} Let us denote $$ \Theta(i,k,n) = \binom{\lfloor\frac{k+1}2\rfloor-n+i}{i}+\binom{\lfloor\frac{k+1}2\rfloor-n+i-1}{i-1} $$ for any positive integers $i$, $k$ and any nonnegative integer $n$. \begin{theorem}%1 Let $n$ be any nonnegative integer and let $k$ be any positive integer. Then \begin{equation} S_{n}(k) = \sum_{i=0}^{\lfloor\frac{n}2\rfloor} (-1)^{\lfloor\frac{n}2\rfloor - i} \, \Theta(i,k,n) \, \fbinom{k+1}{n-2i} \label{eq: R5} %\tag{5} \end{equation} if $k$ is odd and \begin{equation} S_{n}(k) = \sum_{i=0}^{\lfloor\frac{n}2\rfloor} \sum_{j=0}^{n-2i} (-1)^{i + n(\frac{k}2+1) + \frac{j}2(j+k+1)} \, \Theta(i,k,n) \, \fbinom{k+1}{j}\label{eq: R6} %\tag{6} \end{equation} if $k$ is even. \end{theorem} \begin{corollary} Let $n$ be any nonnegative integer and let $k$ be any positive integer. Then the asymptotic formula \begin{equation} S_{n}(k) \sim \sum_{i=0}^{\lfloor\frac{n}2\rfloor} (-1)^{\lfloor\frac{n}2\rfloor + i\,k} \, \Theta(i,k,n)\, \fbinom{k+1}{n-2i}\label{eq: R7} %\tag{7} \end{equation} holds as $k\to\infty$. \end{corollary} \begin{theorem} Let $m$ be any integer and let $k$ be any even positive integer. Then $$ \sum_{j=0}^{m} (-1)^{\frac{j}2(j+k+1)} \fbinom{k+1}{j} = (-1)^{\frac{m}2(m+k+1)}\frac1{F_{\frac{k}2+1}} \sum_{i=0}^{\lfloor\frac{m}2\rfloor} (-1)^i \fbinom{k+2}{m-2i}\,F_{\frac{k+2}2-m+2i}~. $$ \end{theorem} \begin{corollary} Let $n$ be any nonnegative integer and let $k$ be any even positive integer. Then \begin{equation} S_{n}(k) = \frac{(-1)^{\lfloor\frac{n}2\rfloor}}{F_{\frac{k}2+1}} \sum_{i=0}^{\lfloor\frac{n}2\rfloor}\sum_{j=i}^{\lfloor\frac{n}2\rfloor} \, (-1)^{i+j}\, \Theta(i,k,n) \,\fbinom{k+2}{n-j} \, F_{\frac{k+2}2-n+2j}~.\label{eq: R8} %\tag{8} \end{equation} \end{corollary} \begin{theorem}%Theorem~3 Let $m$ be any integer. Then \begin{align*} \sum_{j=0}^{m} (-1)^{\frac{j}2(j+k+1)} \fbinom{k+1}{j} &= \frac{(-1)^{\frac{m}2(m+k+1)}}{F_{\frac{k}2+1}F_{k+3}F_{k+4}} \sum_{i=0}^{\lfloor\frac{m}4\rfloor} \fbinom{k+4}{m-4i} \times \\ & \times\left(F_{\frac{k}2+1-(m-4i)}\,L_{\frac{k}2+2-(m-4i)}\,F_{k+3}-F_{m-4i}\,F_{m-4i-1}\right)~. \end{align*} \end{theorem} \begin{corollary} Let $n$ be any nonnegative integer. Then \begin{equation} \sum_{i=0}^{\lfloor\frac{n}2\rfloor} (-1)^{i} \left( \binom{\frac{k+1}2-n+i}{i}+\binom{\frac{k-1}2-n+i}{i-1} \right)\, \fbinom{k+1}{n-2i} = 0 \label{eq: R9} %\tag{9} \end{equation} if $k$ is an odd positive integer, $k<2n-1$, and \begin{equation} \sum_{i=0}^{\lfloor\frac{n}2\rfloor} \sum_{j=0}^{n-2i} (-1)^{i+\frac{j}2(j+k+1)} \left( \binom{\frac{k}{2}-n+i}{i}+\binom{\frac{k-2}{2}-n+i}{i-1} \right)\, \fbinom{k+1}{j} = 0 \label{eq: R10} %\tag{10} \end{equation} if $k$ is an even integer, $k<2n$. \end{corollary} \begin{corollary} Let $k$ be any even positive integer. Then \begin{align*} \sum_{i=0}^{\frac{k-2}2} (-1)^{i}\, L_{k-2i} &= F_{k+1} - (-1)^{\frac{k}2}~, \\ \sum_{i_2=0}^{\frac{k-2}2}\sum_{i_1=i_2+1}^{\frac{k-2}2} (-1)^{i_1+i_2+1}\, L_{k-2i_1}\,L_{k-2i_2} &= \frac{k-2}2 + (-1)^{\frac{k}2}F_{k+1} + F_k\,F_{k+1} \end{align*} and \begin{align*} \sum_{i_3=0}^{\frac{k-2}2}\sum_{i_2=i_3+1}^{\frac{k-2}2}&\sum_{i_1=i_2+1}^{\frac{k-2}2} (-1)^{i_1+i_2+i_3}\, L_{k-2i_1}\,L_{k-2i_2}\,L_{k-2i_3} \\ &=\frac{k-4}2 \left((-1)^{\frac{k}2} - F_{k+1}\right) + F_k\,F_{k+1}\left((-1)^{\frac{k}2} - \frac{1}2 F_{k-1} \right) ~. \end{align*} \end{corollary} \bigskip \section{The preliminary results} \medskip \begin{lemma}%1 Let $k$ be any positive integer. Then $S_n(k) = 0$ for each positive integer $n>\left\lfloor\frac{k+1}2\right\rfloor$. \end{lemma} \begin{proof}%[\bf Proof of Lemma~7] After rewriting relation \thetag{4} from Definition 1 into the form $$ S_n(k) = \sum_ {\substack{i_1, i_2,\dots, i_n \\ 0\leq i_n< i_{n-1}< \cdots < i_1 \leq \left\lfloor\frac{k-1}2\right\rfloor}} (-1)^{i_1+i_2+\cdots+i_n} \prod_{j=1}^{n} L_{k-2\,i_j} $$ the assertion easily follows from the condition $$ 0\leq i_n< i_{n-1}< \cdots < i_1 \leq \left\lfloor\frac{k-1}2\right\rfloor $$ which does not hold for any values $i_1, i_2,\dots, i_n$ if $\left\lfloor\frac{k-1}2\right\rfloor\lfloor\frac{k}4\rfloor$. For the sum in $(i)$ the following holds: $$ \sum_{i=0}^{\frac{k}2+l} \binom{\frac{k}2-2i}{\frac{k}2+l-i} S_{2i}(k) = Q_1(k,l) + Q_2(k,l)~, $$ where $$ Q_1(k,l) = \sum_{i=0}^{\lfloor\frac{k}4\rfloor} \binom{\frac{k}2-2i}{\frac{k}2+l-i} S_{2i}(k) $$ and $$ Q_2(k,l) = \sum_{i=\lfloor\frac{k}4\rfloor+1}^{\frac{k}2+l} \binom{\frac{k}2-2i}{\frac{k}2+l-i} S_{2i}(k) = \sum_{p=1}^{\frac{k}2-\lfloor\frac{k}4\rfloor+l} \binom{\frac{k}2-2\lfloor\frac{k}4\rfloor-2p}{\frac{k}2-\lfloor\frac{k}4\rfloor+l-p} S_{2\lfloor\frac{k}4\rfloor+ 2p} (k)~. $$ It is obvious that $\binom{\frac{k}2-2i}{\frac{k}2+l-i}=0$ if $i\leq\lfloor\frac{k}4\rfloor$ and therefore $Q_1(k,l)=0$ for any $k$ and $l$. Since the equality $S_{2\lfloor\frac{k}4\rfloor+2p}(k)=0$ is implied by Lemma~9 for any nonnegative integer $p$, it follows that $Q_2(k,l)=0$. \end{proof} \begin{lemma}%3 Let $n$ be any positive integer and let $q$ be any integer. Then the following inverse formula holds: $$ a_n = \sum_{i=0}^{\lfloor \frac{n}2 \rfloor} (-1)^n \binom{q-n+2i}{i} b_{n-2i} $$ if and only if \begin{equation} b_n = \sum_{i=0}^{\lfloor \frac{n}2 \rfloor} (-1)^{n+i} \left( \binom{q-n+i}{i} + \binom{q-n+i-1}{i-1} \right)\, a_{n-2i}~.\label{eq: R11}%\tag{11} \end{equation} \end{lemma} \begin{proof}%[\bf Proof of Lemma~9] Riordan \cite[p.\ 243]{Ri7} gave the following inverse formula: $$ a_n = \sum_{i=0}^{n} \binom{q-2i}{n-i} b_i $$ if and only if $$ b_n = \sum_{i=0}^{n} (-1)^{n+i} \left( \binom{q-n-i}{n-i} + \binom{q-n-i-1}{n-i-1} \right)\, a_i~. $$ To get Lemma~11 from this formula first we substitute $\{a_{n}\}$ by $\{a_{2n}\}$, $\{b_{i}\}$ by $\{b_{2i}\}$, $n$ by $\frac{n}{2}$ and $i$ by $\frac{n}{2}-i$ and then $\{a_{n}\}$ by $\{a_{2n+1}\}$, $\{b_{i}\}$ by $\{-b_{2i+1}\}$, $n$ by $\frac{n-1}{2}$, $i$ by $\frac{n-1}{2}-i$ and $q$ by $q-1$. This leads to the proved formula. \end{proof} \begin{lemma}%4 Let $n$, $k$, $l$ be any positive integers, $l0~. \end{array} \right. \end{displaymath} \end{lemma} \begin{proof}%[\bf Proof of Lemma~13] The cases for $i\leq 0$ are clear. For $i>0$ we can write: \begin{multline*} \Theta(i,k,n) = \binom{\frac{k}2-n+i}{i}+\binom{\frac{k}2-n+i-1}{i-1} \\ = \frac{k-2(n-2i)}{2i}\; \binom{\frac{k}{2}-n+i-1}{i-1} = \frac{k-2(n-2i)}{2i}\; \prod_{j=1}^{i-1} \frac{\frac{k}2 - n + i - j}{i - j} \end{multline*} and the proof is over. \end{proof} \bigskip \section{Additional properties of the inner sum} \medskip Now we will investigate properties of the inner sum involved in \thetag{6}. Let us denote \begin{equation} \sigma_k(m) = \sigma(m) := \sum_{j=0}^{k-m} (-1)^{\frac{j}2(j+k+1)} \fbinom{k+1}{j}~,\label{eq: R15}%\tag{15} \end{equation} where $k$ is any even positive integer and $m$ is any integer. \begin{lemma}%8 Let $k$ be any even positive integer and let $m$ be any integer. Then $(i)$ $$ \sigma(m) = 0~, \text{ for }\quad m\leq -1 \quad \text{or} \quad m\geq k+1~, $$ $(ii)$ $$ \sigma(k-m) = \sigma(m)~, $$ $(iii)$ \begin{alignat*}{2} \sigma(0) &= 1~, \quad & \sigma(1)=&\, 1 + (-1)^{\frac{k-2}2}F_{k+1}~, \\ \sigma(2) &= 1 - L_{\frac{k+2}2} F_{k+1}F_{\frac{k-2}2}~, \quad & \sigma(3)=&\, 1 - \frac12(-1)^{\frac{k}2}F_{k+1} \left(2 - F_k\,F_{\frac{k-4}2} L_{\frac{k+2}2}\right)~. \end{alignat*} \end{lemma} \begin{proof}%[\bf Proof of Lemma~14] $(i)$ First we prove the case for $m=-1$: \begin{align*} \sigma(-1) &= \sum_{j=0}^{k+1} (-1)^{\frac{j}2(j+k+1)} \fbinom{k+1}{j} \\ &= \sum_{j=0}^{\frac{k}2} (-1)^{\frac{j}2(j+k+1)} \fbinom{k+1}{j} + \sum_{j=\frac{k}2+1}^{k+1} (-1)^{\frac{j}2(j+k+1)} \fbinom{k+1}{j} \\ &= \sum_{j=0}^{\frac{k}2} (-1)^{\frac{j}2(j+k+1)} \fbinom{k+1}{j} + \sum_{i=0}^{\frac{k}2} (-1)^{\frac{k+1-i}2(2k+2-i)} \fbinom{k+1}{k+1-i} \\ &= \sum_{j=0}^{\frac{k}2} (-1)^{\frac{j}2(j+k+1)} \fbinom{k+1}{j} + \sum_{i=0}^{\frac{k}2} (-1)^{-1} (-1)^{\frac{i}2(i+k+1)} \fbinom{k+1}{i} = 0~. \end{align*} For $m\geq k+1$ the assertion is obvious, according to defining formula \thetag{15}. The case for $m<-1$ follows from $\sigma(-1)=0$ and $\fbinom{k+1}{i}=0$, for $i>k+1$, with respect to the definition of the Fibonomial coefficients. \medskip $(ii)$ We can write successively \begin{align*} \sigma(k-m) &= \sum_{j=0}^{m} (-1)^{\frac{j}2(j+k+1)} \fbinom{k+1}{j} = \sum_{i=k-m+1}^{k+1} (-1)^{\frac{k+1-i}2(2k+2-i)} \fbinom{k+1}{k+1-i} \\ &= \sum_{i=k-m+1}^{k+1} (-1)^1 (-1)^{\frac{i}2(i+k+1)} \fbinom{k+1}{i} \\ &= \sum_{i=0}^{k+1} (-1)^1 (-1)^{\frac{i}2(i+k+1)} \fbinom{k+1}{i} - \sum_{i=0}^{k-m} (-1)^1 (-1)^{\frac{i}2(i+k+1)} \fbinom{k+1}{i} \\ &= -\sigma(-1) + \sum_{i=0}^{k-m} (-1)^{\frac{i}2(i+k+1)} \fbinom{k+1}{i} = \sigma(m)~. \end{align*} \medskip $(iii)$ Identities for $\sigma(0)$ and $\sigma(1)$ are directly implied by $\sigma(-1)=0$. Using case $(ii)$ and identity \thetag{14} we have \begin{align*} \sigma(2) &= \sum_{j=0}^{k-2} (-1)^{\frac{j}2(j+k+1)} \fbinom{k+1}{j} = 1 + (-1)^{\frac{k-2}2}F_{k+1} - F_{k+1}F_{k} \\ &= 1 - F_{k+1}\left( F_k + (-1)^{\frac{k}2} \right) = 1- F_{k+1}\,L_{\frac{k}2+1}\,F_{\frac{k}2-1}~, \end{align*} \begin{align*} \sigma(3) &= \sigma(2) - \frac12 (-1)^{\frac{k-2}2} F_{k+1}F_{k}F_{k-1} \\ &= 1 - F_{k+1}F_{k} - (-1)^{\frac{k}2}F_{k+1} + \frac12 (-1)^{\frac{k}2} F_{k+1}F_{k}F_{k-1} \\ &= 1 - \frac12(-1)^{\frac{k}2} F_{k+1} \left( 2 - F_k\left( F_{k-1}-2(-1)^{\frac{k}2} \right)\right) \\ &= 1 - \frac12(-1)^{\frac{k}2} F_{k+1} \left( 2 - F_k\,F_{\frac{k}2-2}\,L_{\frac{k}2+1} \right)~. \end{align*} This finishes the proof. \end{proof} \medskip The sum $\sigma (m)$ can be simplified by the following lemma. \begin{lemma}%9 Let $k$ be any even positive integer and let $m$ be any integer. Then $$ \sigma(m) - \sigma(m-2) = (-1)^{\frac{m}2(m+k+1)} \fbinom{k+2}{m} \frac{F_{\frac{k}2+1-m}}{F_{\frac{k}2+1}}~. $$ \end{lemma} \begin{proof}%[\bf Proof of Lemma~15] For $m<2$ the assertion follows from the definition of the Fibonomial coefficients and Lemma~16. For $m\geq 2$ we have, with respect to Lemma~16, \begin{align*} \sigma(m)-\sigma(m-2) &= \sigma(k-m)-\sigma(k-m+2) \\ &= \sum_{j=0}^{m} (-1)^{\frac{j}2(j+k+1)} \fbinom{k+1}{j} - \sum_{j=0}^{m-2} (-1)^{\frac{j}2(j+k+1)} \fbinom{k+1}{j} \\ &= (-1)^{\frac{m}2(m+k+1)} \fbinom{k+1}{m} + (-1)^{\frac{m-1}2((m-1)+k+1)} \fbinom{k+1}{m-1} \\ &= (-1)^{\frac{m}2(m+k+1)} \left( \fbinom{k+1}{m} + (-1)^{\frac{k}2+m}\fbinom{k+1}{m-1} \right)~, \end{align*} which, by Lemma~14, implies the assertion. \end{proof} \begin{lemma}%10 Let $k$ be any even positive integer and let $m$ be any integer. Then \begin{equation} \sigma(m) - \sigma(m-4) = (-1)^{\frac{m}2(m+k+1)}\fbinom{k+4}{m} \frac{F_{\frac{k}2+2-m}} {F_{\frac{k}2+1}F_{k+3}F_{k+4}} \;\;\omega (m,k)~,\label{eq: R16}%\tag{16} \end{equation} where $$ \omega (m,k) = F_{\frac{k}2+1-m}\,L_{\frac{k}2+2-m}\,F_{k+3}-F_{m}\,F_{m-1}~. $$ \end{lemma} \begin{proof}%[\bf Proof of Lemma~16] With respect to Lemma~17 we have for any integer $m$ \begin{align*} \sigma(m&) - \sigma(m-4) = (\sigma(m)-\sigma(m-2))+(\sigma(m-2)-\sigma(m-4)) = \\ &= (-1)^{\frac{m}2(m+k+1)} \frac1{F_{\frac{k}2+1}} \left( F_{\frac{k}2+1-m}\fbinom{k+2}{m} - F_{\frac{k}2+3-m}\fbinom{k+2}{m-2} \right)~. \end{align*} The bracket term can be rewritten as \begin{align*} F_{\frac{k}2+1-m} & \fbinom{k+2}{m} - F_{\frac{k}2+3-m}\fbinom{k+2}{m-2} = \\ &= \fbinom{k+4}{m} \frac1{F_{k+3}F_{k+4}} \left( F_{\frac{k}2+1-m}\,F_{k+3-m}\,F_{k+4-m} - F_{\frac{k}2+3-m}\,F_m\,F_{m-1}~. \right) \end{align*} The identity $$ F_{k+3-m}\,F_{k+4-m} = F_{k+4-2m}\,F_{k+3}+F_m\,F_{m-1} $$ follows from the identity (\cite[p.\ 177]{Va11}) $$ F_{n+h}\,F_{n+l} - F_{n}\,F_{n+h+l} = (-1)^n F_h\,F_l~, $$ with any integers $h$, $n$, $l$. Hence, we obtain \begin{align*} &F_{\frac{k}2+1-m} \fbinom{k+2}{m} - F_{\frac{k}2+3-m}\fbinom{k+2}{m-2} \\ &= \fbinom{k{+}4}{m} \frac1{F_{k+3}F_{k+4}} \left( F_{\frac{k+2}2{-}m}\,\bigg(F_{k+4-2m}\,F_{k+3} {-} F_m\,F_{m-1}\bigg) - F_{\frac{k+6}2-m}\,F_m\,F_{m-1} \right) \\ &= \fbinom{k{+}4}{m} \frac1{F_{k+3}F_{k+4}} \left( F_{\frac{k}2+1-m}\,F_{k+4-2m}\,F_{k+3} - \left(F_{\frac{k}2+3-m} - F_{\frac{k}2+1-m}\right) F_m\,F_{m-1} \right) \\ &= \fbinom{k{+}4}{m} \frac{F_{\frac{k}2+2-m}}{F_{k+3}F_{k+4}} \left( F_{\frac{k}2+1-m}\,L_{\frac{k}2+2-m}\,F_{k+3} - F_{m}\,F_{m-1} \right) \end{align*} and the assertion follows. \end{proof} \begin{lemma}%11 Let $m\geq 5$ be any integer and let $k$ be any positive even integer in one of the following forms $$ (i)\ k = m - 4 + [2\nmid m]~, \quad (ii) \ k = 2(m-3)~, \quad (iii) \ k = 2(m-1)~. $$ Then $\omega(m,k)$ can be factored into a product of the Fibonacci or Lucas numbers. \end{lemma} \begin{proof}%[\bf Proof of Lemma~18] Condition $(i)$, with respect to the identities (\cite[pp.\ 176--177]{Va11}) $F_{-n}=(-1)^{n+1}F_n$, $L_{-n}=(-1)^{n}L_n$ and $F_{2n}=F_n\,L_n$, leads to the relation \begin{align*} \omega(m,m-3) &= F_{-\frac{m+1}2}\,F_m\,L_{-\frac{m-1}2} - F_{m}\,F_{m-1} = F_{m}\,L_{\frac{m-1}2} (F_{\frac{m+1}2} - F_{\frac{m-1}2} ) \\ &= F_{m}\,F_{\frac{m-3}2}\,L_{\frac{m-1}2} \end{align*} if $m$ is odd and to the relation \begin{align*} \omega(m,m-4) &= F_{\frac{m+2}2}\,F_{m-1}\,L_{\frac{m}2} - F_{m}\,F_{m-1} = F_{m-1}\,L_{\frac{m}2} ( F_{\frac{m+2}2} - F_{\frac{m}2}) \\ &= F_{m-1}\,F_{\frac{m-2}2}\,L_{\frac{m}2} \end{align*} if $m$ is even. Using the identity $F_{n+1}^2+F_n^2=F_{2n+1}$ (\cite[p.\ 177]{Va11}), we have from condition $(ii)$ \begin{align*} \omega(m,2(m-3)) &= F_{2m-3} - F_m\,F_{m-1} = F_{m-2}^2 + F_{m-1}^2 - F_m\,F_{m-1} \\ &= F_{m-2}^2 - F_{m-1}\,(F_m - F_{m-1}) = F_{m-2}^2 - F_{m-1}\,F_{m-2} \\ &= F_{m-2}(F_{m-2} - F_{m-1}) = - F_{m-2}\,F_{m-3}~. \end{align*} Condition $(iii)$ gives $\omega(m,2(m-1))= - F_m\,F_{m-1}$. \end{proof} \begin{rem}%Remark~1 {\rm The right--hand side of \thetag{16} can not be factored in a product of the Fibonacci or Lucas numbers for arbitrary values of $k$ and $m$. The trivial factorization can be done for $m=0$ and $m=1$. Table~1 lists the values of $m$ and $k$, $2\leq m\leq 10$, $2\leq k\leq 170$, for which $\omega(m,k)$ can be factored into a product of the Fibonacci or Lucas numbers. These values were found by computer. The computer search for $10 \leq m\leq 100$ showed that $\omega(m,k)$ can be factored into a product of the Fibonacci or Lucas numbers only at values of $m$, $k$ satisfying conditions from Lemma~20. } \bigskip \newpage \begin{center} {\rm Table~1. The values for which $\omega(m,k)$ is factorizable. \vspace{5mm} \begin{tabular}{|c||ccccc|} \hline $m$ & & & $k$ & & \\ \hline \hline 2 & 2 & 6 & & & \\ 3 & 2 & 4 & 6 & & \\ 4 & 2 & 4 & 6 & 8 & \\ 5 & 2 & 4 & 8 & 10 & \\ 6 & 2 & 6 & 10 & & \\ 7 & 4 & 6 & 8 & 12 & \\ 8 & 4 & 6 & 8 & 10 & 14 \\ 9 & 2 & 6 & 10 & 12 & 16 \\ 10 & 2 & 6 & 14 & 18 & \\ \hline \end{tabular} } \end{center} \end{rem} \medskip \bigskip \section{The proofs of the main results} \medskip \begin{proof}[\bf Proof of Theorem~2]%Theorem~1 First we prove identity \thetag{5}. We showed \cite{Se9} that for any positive odd integer $k$ and any positive integer $n$ \begin{equation} S_{2n-1}(k) = \sum_{i=1}^{n} (-1)^{i+1} \left( \binom{\frac{k+3}{2}-n-i}{n-i}+\binom{\frac{k+1}{2}-n-i}{n-i-1} \right)\, \fbinom{k+1}{2i-1} \label{eq: R17}%\tag{17} \end{equation} and \begin{equation} S_{2(n-1)}(k) = \sum_{i=1}^{n} (-1)^{i+1} \left( \binom{\frac{k+5}{2}-n-i}{n-i}+\binom{\frac{k+3}{2}-n-i}{n-i-1} \right)\, \fbinom{k+1}{2(i-1)}~. \label{eq: R18}%\tag{18} \end{equation} Relation \thetag{5} can be obtained from \thetag{17} and \thetag{18}. Replacing $n$ by $n+1$ and $i$ by $n+1-i$ we have for any nonnegative integer $n$ $$ S_{2n+1}(k) = \sum_{i=0}^{n} (-1)^{n-i} \left( \binom{\frac{k+1}{2}{-}(2n{+}1){+}i}{i}+\binom{\frac{k-1}{2}{-}(2n{+}1){+}i}{i-1} \right)\, \fbinom{k+1}{2n{+}1{-}2i} $$ and $$ S_{2n}(k) = \sum_{i=0}^{n} (-1)^{n-i} \left( \binom{\frac{k+1}{2}-2n+i}{i}+\binom{\frac{k-1}{2}-2n+i}{i-1} \right)\, \fbinom{k+1}{2n - 2i}~, $$ which can be joined into the proved identity. We begin the proof of relation \thetag{6} by defining the polynomial \begin{equation} P_{k}(x) = \sum_{i=0}^{k} p_i(k)\, x^i=\prod_{j=0}^{\frac{k}2-1} \left(1-(-1)^j L_{k-2j}\,x + x^2\right) \label{eq: R19}%\tag{19} \end{equation} for an even nonnegative integer $k$. By direct multiplication of the factors in \thetag{19} we get the identities \begin{equation} p_{2i+1}(k) = - \sum_{j=0}^{i} \binom{\frac{k}{2}-(2j+1)}{i-j} \; S_{2j+1}(k)~, \label{eq: R20}%\tag{20} \end{equation} for $i=0,1,2,\dots,\frac{k-2}{2}$, and \begin{equation} p_{2i}(k) = \sum_{j=0}^{i} \binom{\frac{k}{2}-2j}{i-j} \; S_{2j}(k)~,\label{eq: R21}%\tag{21} \end{equation} for $i=0,1,2,\dots,\frac{k}{2}$. By shifting indexes of summation it is possible to join \thetag{20} and \thetag{21} into the relation \begin{equation} p_n(k) = \sum_{i=0}^{\lfloor\frac{n}2\rfloor} (-1)^{n} \binom{\frac{k}{2}-n+2i}{i} \; S_{n-2i}(k)~, \label{eq: R22}%\tag{22} \end{equation} for $n=0,1,2,\dots,k$. This identity can be extended to any positive integer $n$ with respect to Lemma~9, as $p_{n}(k)=0$ for $n<0$ or $n>k$. If $k$ is an even positive integer, the denominator in \thetag{1} is a polynomial of an odd degree $k+1$: $$ D_{k+1}(x)=\sum_{i=0}^{k+1} d_{k+1,i}\, x^i~, $$ where integers $d_{k+1,i}=(-1)^{\frac{i(i+1)}2}\fbinom{k+1}{i}$ are terms of sequence \seqnum{A055870}, called the ``signed Fibonomial triangle'' in Sloane's {\it On-Line Encyclopedia of Integer Sequences} \cite{WWW12}. Identity \thetag{2} implies \begin{align*} D_{k+1}(x) &= \prod_{j=0}^{k} (1-\alpha^{k-j}\,\beta^j\,x) = (1-(\alpha \beta)^{\frac{k}2}x) \prod_{\substack{ j=0 \\ j\not=\frac{k}2}}^{k} (1-\alpha^{k-j}\,\beta^j\,x) \\ &=(1-(-1)^{\frac{k}{2}}x) \prod_{j=0}^{\frac{k}2-1} \left(1-(-1)^j\alpha^{k-2j}\,x\right)\, \left(1-(-1)^j\beta^{k-2j}\,x\right) \\ &=(1-(-1)^{\frac{k}{2}}x) \prod_{j=0}^{\frac{k}2-1} \left(1-(-1)^j (\alpha^{k-2j}+\beta^{k-2j})\,x + (\alpha\beta)^{k-2j}x^2 \right) \\ &=(1-(-1)^{\frac{k}{2}}x) \prod_{j=0}^{\frac{k}2-1} (1-(-1)^j L_{k-2j}x + x^2)~, \end{align*} according to the relation $\alpha\beta=-1$ and the formula \hbox{$L_{k{-}2j}=\alpha^{k{-}2j}{+}\beta^{k{-}2j}$.} Thus, with respect to \thetag{19}, $D_{k+1}(x) = (1-(-1)^{\frac{k}{2}}x) \, P_k(x)$. By multiplying on the \hbox{right--hand} side and comparing coefficients of $x^i$ we have the following relations between coefficients $d_{k+1,i}$ of $D_{k+1}(x)$ and coefficients $p_i(k)$ of $P_k(x)$ \begin{align*} d_{k+1,0} &= p_0(k) = 1~, \\ d_{k+1,i} &= p_i(k) + (-1)^{\frac{k}{2}+1}\, p_{i-1}(k)~, \ i=1,2,\dots,k~, \\ d_{k+1,k+1} &= (-1)^{\frac{k}{2}+1} p_k(k) = (-1)^{\frac{k}{2}+1}~. \\ \end{align*} As $p_{n}(k)=0$ for $n<0$ or $n>k$ we can rewrite the previous relations in the recurrence $$ p_n(k) + (-1)^{\frac{k}2+1} \, p_{n-1}(k) = d_{k+1,n}~, $$ which holds for any integer $n$. Using Lemma~13 we have \begin{equation} p_n(k)= \sum_{j=0}^{n} (-1)^{\frac{k}{2}(n+j)} d_{k+1,j} \label{eq: R23}%\tag{23} \end{equation} for any nonnegative integer $n$. To complete the proof of \thetag{6} we have to invert identity \thetag{22}. Setting \linebreak $a_n = p_{2n}(k)$, $b_n = S_{2n}(k)$ and $q=\frac{k}{2}$ in inverse formula \thetag{11} we obtain \begin{equation} S_{n}(k) = \sum_{i=0}^{\lfloor \frac{n}2\rfloor} (-1)^{n+i} \left( \binom{\frac{k}{2}-n+i}{i}+\binom{\frac{k}{2}-n+i-1}{i-1} \right)\, p_{n-2i}(k)~.\label{eq: R24}%\tag{24} \end{equation} From \thetag{23} and \thetag{24} we deduce that $$ S_{n}(k) = \sum_{i=0}^{\lfloor \frac{n}2\rfloor}\sum_{j=0}^{n-2i} (-1)^{n+i}(-1)^{\frac{k}2(n+j)} \left( \binom{\frac{k}{2}-n+i}{i}+\binom{\frac{k}{2}-n+i-1}{i-1} \right)\, d_{k+1,j}~. $$ Putting $d_{k+1,j}=(-1)^{\frac{j}2(j+1)}\fbinom{k+1}{j}$ we obtain \thetag{6} after simplification. \end{proof} \begin{proof}[\bf Proof of Corollary~3]%Corollary~1 The assertion is obviously true with respect to \thetag{5} if $k$ is any odd integer. For even values of $k$ identity \thetag{6} can be written using \thetag{15} as $$ S_{n}(k) = \sum_{i=0}^{\lfloor\frac{n}2\rfloor} (-1)^{n+i+n\frac{k}2} \,\sigma (n-2i)\; \Theta(i,k,n)~. $$ With respect to Lemma~12 for $k\to\infty$ $$ \sigma (n-2i) \sim (-1)^{\frac{n-2i}2\,(n-2i+k+1)} \fbinom{k+1}{n-2i} = (-1)^i(-1)^{\frac{n}2\,(n+k+1)} \fbinom{k+1}{n-2i}~. $$ Hence, we obtain \begin{align*} S_{n}(k) &\sim \sum_{i=0}^{\lfloor\frac{n}2\rfloor} (-1)^{n+i+n\frac{k}2}\,(-1)^i (-1)^{\frac{n}2\,(n+k+1)}\; \Theta(i,k,n)\,\fbinom{k+1}{n-2i} \\ &= \sum_{i=0}^{\lfloor\frac{n}2\rfloor} (-1)^{\frac{n}2\,(n-1)}\; \Theta(i,k,n)\,\fbinom{k+1}{n-2i} \end{align*} and the assertion follows from the congruence $\frac{n}2(n{-}1)\equiv \lfloor\frac{n}2\rfloor\pmod 2$. \end{proof} \begin{proof}[\bf Proof of Theorem~4]%Theorem~2 For any even $m$ we have $$ \sum_{i=0}^{\frac{m}2} (\sigma(m-2i) - \sigma(m-2(i+1))) = \sigma(m) - \sigma(-2) $$ and analogously for any odd $m$ $$ \sum_{i=0}^{\frac{m-1}2} ( \sigma(m-2i) - \sigma(m-2(i+1)) ) = \sigma(m) - \sigma(-1)~. $$ Thus, using Lemma~16 we obtain for any integer $m$ $$ \sigma(m) = \sum_{i=0}^{\lfloor\frac{m}2\rfloor} (\sigma(m-2i) - \sigma(m-2(i+1))) $$ and with respect to Lemma~17 \begin{align*} \sigma(m) &= \sum_{i=0}^{\lfloor\frac{m}2\rfloor} (-1)^{\frac{m-2i}2(m-2i+k+1)}\frac1{F_{\frac{k}2+1}} \fbinom{k+2}{m-2i}\,F_{\frac{k}2+1-(m-2i)} \\ &=(-1)^{\frac{m}2(m+k+1)}\frac1{F_{\frac{k}2+1}} \sum_{i=0}^{\lfloor\frac{m}2\rfloor} (-1)^i \fbinom{k+2}{m-2i}\,F_{\frac{k+2}2-m+2i}~. \end{align*} \end{proof} \begin{proof}[\bf Proof of Corollary~5]%Corollary~4 Applying Theorem~2~and Theorem~4, consecutively, we get \begin{align*} S_{n}(k) &= \sum_{i=0}^{\lfloor\frac{n}2\rfloor} (-1)^{n+i+n\frac{k}2} \,\sigma (n-2i)\; \Theta(i,k,n) \\ &=\sum_{i=0}^{\lfloor\frac{n}2\rfloor} (-1)^{n+i+n\frac{k}2} \, \Theta(i,k,n)\, \frac{(-1)^{\frac{n}2(n+k+1)}}{F_{\frac{k}2+1}} \, \sum_{j=i}^{\lfloor\frac{n}2\rfloor} (-1)^j \,\fbinom{k+2}{n-2j} \, F_{\frac{k+2}2-n+2j} \\ &=\sum_{i=0}^{\lfloor\frac{n}2\rfloor} (-1)^{\frac{n}2(n-1)+i} \, \frac1{F_{\frac{k}2+1}} \, \Theta(i,k,n)\; \sum_{j=i}^{\lfloor\frac{n}2\rfloor} (-1)^j \,\fbinom{k+2}{n-2j} \, F_{\frac{k+2}2-n+2j} \\ &=\sum_{i=0}^{\lfloor\frac{n}2\rfloor} (-1)^{\lfloor\frac{n}2\rfloor+i} \, \Theta(i,k,n) \, \frac1{F_{\frac{k}2+1}} \;\sum_{j=i}^{\lfloor\frac{n}2\rfloor} (-1)^j \,\fbinom{k+2}{n-2j} \, F_{\frac{k+2}2-n+2j} \\ &= \frac{(-1)^{\lfloor\frac{n}2\rfloor}}{F_{\frac{k}2+1}} \sum_{i=0}^{\lfloor\frac{n}2\rfloor}\sum_{j=i}^{\lfloor\frac{n}2\rfloor} \, (-1)^{i+j}\, \Theta(i,k,n) \,\fbinom{k+2}{n-2j} \, F_{\frac{k+2}2-n+2j}~. \end{align*} \end{proof} \begin{proof}[\bf Proof of Theorem~6] Similarly as in the proof of Theorem~4 we obtain for any integer $m$ the relation $$ \sum_{i=0}^{\lfloor\frac{m}4\rfloor} (\sigma(m-4i) - \sigma(m-4(i+1))) = \sigma(m) - \sigma\left(m-4\left(\left\lfloor\frac{m}4\right\rfloor + 1\right)\right)~. $$ Thus, using Lemma~16 we obtain $$ \sigma(m) = \sum_{i=0}^{\lfloor\frac{m}4\rfloor} (\sigma(m-4i) - \sigma(m-4(i+1)))~. $$ With respect to Lemma~18 we have \begin{align*} \sigma(m) &= \sum_{i=0}^{\lfloor\frac{m}4\rfloor} (-1)^{\frac{m-4i}2(m-4i+k+1)} \fbinom{k+4}{m-4i} \frac{F_{\frac{k}2+2-(m-4i)}}{F_{\frac{k}2+1}F_{k+3}F_{k+4}} \\ & \cdot \left( F_{\frac{k}2 + 1 - (m-4i)}\,L_{\frac{k}2 + 2 - (m-4i)}\,F_{k+3} - F_{m-4i}\,F_{m-4i-1} \right) \\ &=\frac{(-1)^{\frac{m}2(m+k+1)}}{F_{\frac{k}2+1}F_{k+3}F_{k+4}} \sum_{i=0}^{\lfloor\frac{m}4\rfloor} \fbinom{k+4}{m-4i} F_{\frac{k}2+2-(m-4i)} \\ & \cdot \left( F_{\frac{k}2+1-(m-4i)}\,L_{\frac{k}2+2-(m-4i)}\,F_{k+3}-F_{m-4i}\,F_{m-4i-1} \right) ~. \end{align*} \end{proof} \begin{proof}[\bf Proof of Corollary~7] Identities \thetag{9} and \thetag{10} can be obtained from identities \thetag{5} and \thetag{6} with respect to $S_n(k)=0$ for positive integers $k$, $n>\lfloor \frac{k+1}2\rfloor$ (see Lemma~9). \end{proof} \begin{proof}[\bf Proof of Corollary~8] Each of these three sums follows from identity \thetag{6} after some tedious simplification. \end{proof} \bigskip \section{Concluding remark} \medskip It is interesting to compare the effectiveness of formulas \thetag{6} and \thetag{8} in contrast to defining formula \thetag{4} for computation of $S_n(k)$. Therefore, we found the CPU time (in seconds) required for computation of sums $S_3(k)$ for some values of $k$ using the system Mathematica on a standard PC. There is the measured time in Table~2. \bigskip \newcommand{\mez}{0.3truecm} \begin{center} Table~2. CPU time for $S_3(k)$ \vspace{5mm} \hbox{\hskip 0.6truecm \vbox{ \begin{tabular}{|ccccccccc|} \hline & \qquad & & & $k$ & & & & \\ \hline \hskip 0.2truecm 100 & \hskip 0.3truecm 200 & \hskip 0.3truecm 300 & \hspace*{\mez} 400 & \hskip 0.5truecm 500 & \hskip 0.5truecm 600 & \hskip 0.6truecm 700 & \hskip 0.8truecm 800 \hspace{-0.17truecm} & \\ \hline \end{tabular} }} \begin{tabular}{|c|cccccccc|} \hline \thetag{4} \; & 0.297 & 2.438 & 8.547 & 21.296 & 43.172 & 77.078 & 130.125 & 203.594 \\ \thetag{6} \; & 0 & 0 & 0.047 & 0.094 & 0.172 & 0.297 & 0.484 & 0.719 \\ \thetag{8} \; & 0 & 0 & 0.015 & 0.046 & 0.078 & 0.156 & 0.25 & 0.359 \\ \hline \end{tabular} \end{center} \begin{thebibliography}{99} \bibitem{Ca1} L. Carlitz, Generating functions for powers of a certain sequence of numbers, {\it Duke Math. J.}, {\bf 29} (1962), 521--537. \bibitem{Go2} S. W. Golomb, Problem 4720, {\it Amer. Math. Monthly}, {\bf 64} (1957), 49. \bibitem{Gr3} R. L. Graham, D. E. Knuth, O. Patashnik, {\it Concrete Mathematics: a Foundation for Computer Science}, Addison-Wesley Publishing Company, 2nd ed., 2nd Edition, 1994. \bibitem{Ho4} A. F. Horadam, Generating functions for powers of a certain generalised sequence of numbers, {\it Duke Math. J.}, {\bf 32} (1965), 437--446. \bibitem{Ka5} V. Kac, Ch. Pokman, {\it Quantum Calculus}, Springer--Verlag, New York, 2002. \bibitem{Ma0} T. Mansour, A formula for generating function of powers of Horadam's sequence, {\it Australas. J. Combin.}, {\bf 30} (2004), 207--212. \bibitem{Ri6} J. Riordan, Generating functions for powers of Fibonacci numbers, {\it Duke Math. J.}, {\bf 29} (1962), 5--12. \bibitem{Ri7} J. Riordan, {\it Combinatorial Identities}, J. Wiley, New York (1968). \bibitem{Ro8} H. Rothe, {\it Systematisches Lehrbuch der Aritmetik}, Leipzig, 1811. \bibitem{Se9} J. Seibert, P. Trojovsk\'y, On sums of certain products of Lucas numbers, {\it Fibonacci Quart.}, {\bf 44} (2006), 172--180. \bibitem{Sh10} A. G. Shannon, A method of Carlitz applied to the k-th power generating function for Fibonacci numbers, {\it Fibonacci Quart.}, {\bf 12} (1974), 293--299. \bibitem{Va11} S. Vajda, {\it Fibonacci and Lucas Numbers and the Golden Section}, Holstel Press, 1989. \bibitem{WWW12} N. J. A. Sloane, {\it The On-Line Encylopedia of Integer Sequences}, \href{http://www.research.att.com/~njas/sequences/index.html}{\tt http://www.research.att.com/\char'176njas/sequences/index.html}. \end{thebibliography} \bigskip \hrule \bigskip \noindent 2000 {\it Mathematics Subject Classification}: Primary 11B39; Secondary 05A15, 05A10. \noindent \emph{Keywords: } generating function, Riordan's theorem, generalized Fibonacci numbers, Fibonomial coefficients. \bigskip \hrule \bigskip \noindent (Concerned with sequence \seqnum{A055870}.) \bigskip \hrule \bigskip \vspace*{+.1in} \noindent Received January 19 2006; revised version received May 2 2007. Published in {\it Journal of Integer Sequences}, May 2 2007. \bigskip \hrule \bigskip \noindent Return to \htmladdnormallink{Journal of Integer Sequences home page}{http://www.cs.uwaterloo.ca/journals/JIS/}. \vskip .1in \end{document} .