\documentclass[12pt,reqno]{article} \usepackage[usenames]{color} \usepackage[colorlinks=true, linkcolor=webgreen, filecolor=webbrown, citecolor=webgreen]{hyperref} \definecolor{webgreen}{rgb}{0,.5,0} \definecolor{webbrown}{rgb}{.6,0,0} \usepackage{color} \usepackage{fullpage} \usepackage{float} \usepackage{psfig} \usepackage{graphics,amsmath,amssymb} \usepackage{amsthm} \usepackage{amsfonts} \usepackage{latexsym} \usepackage{epsf} \usepackage{mathrsfs} \usepackage{epic} \usepackage{curves} \usepackage{amsthm} \setlength{\textwidth}{6.5in} \setlength{\oddsidemargin}{.1in} \setlength{\evensidemargin}{.1in} \setlength{\topmargin}{-.5in} \setlength{\textheight}{8.9in} \newcommand{\seqnum}[1]{\href{http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=#1}{\underline{#1}}} \begin{document} \begin{center} \epsfxsize=4in \leavevmode\epsffile{logo129.eps} \end{center} \begin{center} \vskip 1cm{\LARGE\bf Minimal $r$-Complete Partitions} \vskip 1cm \large \O ystein J. R\o dseth\\ Department of Mathematics\\ University of Bergen\\ Johs. Brunsgt. 12\\ N-5008 Bergen\\ Norway\\ \href{mailto:rodseth@math.uib.no}{\tt rodseth@math.uib.no}\\ \end{center} \vskip .2 in \begin{abstract} A minimal $r$-complete partition of an integer $m$ is a partition of $m$ with as few parts as possible, such that all the numbers $1,\dots,rm$ can be written as a sum of parts taken from the partition, each part being used at most $r$ times. This is a generalization of M-partitions (minimal 1-complete partitions). The number of M-partitions of $m$ was recently connected to the binary partition function and two related arithmetic functions. In this paper we study the case $r\geq2$, and connect the number of minimal $r$-complete partitions to the $(r+1)$-ary partition function and a related arithmetic function. \end{abstract} \newtheorem{theorem}{Theorem}[section] \newtheorem{proposition}{Proposition}[section] \newtheorem{corollary}{Corollary}[section] \newtheorem{lemma}{Lemma}[section] \renewcommand{\leq}{\leqslant} \renewcommand{\geq}{\geqslant} \section{Introduction} Let $\lambda=(\lambda_0,\lambda_1,\ldots,\lambda_n)$ be a partition of the natural number $m$ into $n+1$ parts $\lambda_i$ arranged in non-decreasing order, \[ m=\lambda_0+\lambda_1+\cdots+\lambda_n, \qquad 1\leq\lambda_0\leq\lambda_1\leq\cdots\leq\lambda_n. \] The sum of the parts is called the \emph{weight} of the partition and is denoted by $|\lambda|$, while $n+1$ is the \emph{length} of the partition. MacMahon \cite{mac1}, \cite[pp. 217--223]{mac2} calls the partition $\lambda$ of weight $m$ \emph{perfect} if each positive integer less than $m$ can be written in a \emph{unique} way as a sum of distinct parts $\lambda_i$. Park \cite{park1} calls $\lambda$ a \emph{complete partition} of $m$ if the representation property is maintained, while the uniqueness constraint is dropped. (O'Shea \cite{oshea} calls this a \emph{weak M-partition}.) Prior to Park's paper, infinite complete sequences had been introduced by Hoggatt and King \cite{h&k}, and studied by Brown \cite{brown}. Park \cite{park2} generalized the notion of a complete partition to $r$-\emph{complete partitions} for a positive integer $r$. The partition $\lambda=(\lambda_0,\dots,\lambda_n)$ of $m$ is $r$-complete if each integer $w$ in the interval $0\leq w\leq rm$ can be written as \begin{equation} \label{w} w=\alpha_0\lambda_0+\dots+\alpha_n\lambda_n\qquad\text{with}\quad 0\leq\alpha_i\leq r. \end{equation} Clearly, ``complete'' is the same as ``1-complete''. An $r$-complete partition is also $(r+1)$-complete. We call an $r$-complete partition of $m$ of minimal length a \emph{minimal $r$-complete partition} of $m$. O'Shea \cite{oshea} uses the term \emph{M-partition} in place of minimal complete partition. He showed that for half the numbers $m$, the number of M-partitions of $m$ is equal to the number of binary partitions of $2^{n+1}-1-m$, where $n=\lfloor\log_2 m\rfloor$. (In a binary partition, all parts are powers of $2$.) O'Shea's partial enumeration formula was completed by us in \cite{rdz}. In this paper we connect the minimal $r$-complete partition function (for $r\geq2$) to the $(r+1)$-ary partition function and a related arithmetic function. (In an $(r+1)$-ary partition, all parts are powers of $r+1$.) In Section~\ref{sec:results} we state our results. In Section~\ref{sec:complete} we consider a characterization of minimal $r$-partitions, and in Section~\ref{sec:gen} we prove our main result using (truncated) polynomials and formal power series. \section{Statement of Results} \label{sec:results} Let $f(k)$ be the $(r+1)$-ary partition function, that is, the number of partitions of $k$ into powers of $r+1$. For the generating function $F(x)$ we have \[ F(x)=\sum_{k=0}^\infty f(k)x^k=\prod_{i=0}^\infty\frac{1}{1-x^{(r+1)^i}}. \] We also define the auxiliary arithmetic function $g(k)$ as follows: \[ G(x)=\sum_{k=0}^\infty g(k)x^k=\sum_{j=0}^\infty\frac{x^{{(r+1)^j}-1}} {1-x^{2(r+1)^j}} F(x^{(2r+1)(r+1)^j}) \prod_{i=0}^j\frac{1}{1-x^{(r+1)^i}}. \] A straightforward verification shows that the following functional equations hold: \begin{align} F(x)&=\frac{1}{1-x}F(x^{r+1}), \label{F}\\ G(x)&=\frac{x^r}{1-x}G(x^{r+1})+\frac{1}{(1-x)(1-x^2)}F(x^{2r+1}). \label{G} \end{align} These functional equations give simple recurring relations for fast computation of $f(k)$ and $g(k)$. We adopt the convention that $g(k)=0$ if $k$ is not a non-negative integer. \begin{theorem} \label{res} Let $r\geq2$, and let $a_r(m)$ be the number of minimal $r$-complete partitions of $m$. Then \[ a_r(m)=f\left(\frac{1}{r}\left((r+1)^{n+1}-1\right)-m\right) -g\left(\frac{1}{r}\left((2r+1)(r+1)^{n-1}-1\right)-1-m\right), \] where $n=\lfloor\log_{r+1}(rm)\rfloor$. \end{theorem} \begin{corollary} \label{cor} We have \[ a_r(m)=f\left(\frac{1}{r}\left((r+1)^{n+1}-1\right)-m\right) \] if $\frac{1}{r}((2r+1)(r+1)^{n-1}-1)\leq m \leq\frac{1}{r}((r+1)^{n+1}-1)$. \end{corollary} The case $r=1$ is not covered by Theorem \ref{res}. This case is slightly different from $r\geq2$, as an additional arithmetic function is required in the description of $a_1(m)$; see \cite[Theorem~2]{rdz}. The expression for $a_r(m)$ in Theorem~\ref{res} is, however, valid for $r=1$ if $2^n+2^{n-3}-4\leq m\leq 2^{n+1}-1$. In particular, Corollary \ref{cor} remains valid if $r=1$, a result due to O'Shea \cite{oshea}. Some of the sequences appearing above can be found in Sloane's {\em On-Line Encyclopedia of Integer Sequences} \cite{sloane}. For perfect partitions, see sequence \seqnum{A002033}; for $a_1(m)$, see \seqnum{A100529}. The sequences \seqnum{A000123}, \seqnum{A018819}, \seqnum{A0005704}, \seqnum{A0005705}, \seqnum{A0005706} give the first several values of $f(k)$ for $r=1,1,2,3$, and $4$, respectively. In addition, sequence \seqnum{A117115} gives the $53$ first values of $g(k)$ for $r=1$, and \seqnum{A117117} gives the $53$ first values of the additional arithmetic function required in the description of $a_1(m)$. \section{Completeness} \label{sec:complete} The following lemma is due to Park \cite{park2}, with partial results by Brown \cite{brown} and Park \cite{park1}. \begin{lemma} \label{l1} The partition $\lambda=(\lambda_0,\ldots,\lambda_n)$ is $r$-complete if and only if $\lambda_0=1$ and \begin{equation} \label{eqlem1} \lambda_i\leq1+r(\lambda_0+\cdots+\lambda_{i-1})\quad\mbox{for}\quad i=1,2,\ldots,n. \end{equation} \end{lemma} The necessity of the conditions $\lambda_0=1$ and \eqref{eqlem1} is clear, and the sufficiency follows by induction on $n$; see the proof of Theorem 2.2 in \cite{park2}. \bigskip Suppose that $\lambda=(\lambda_0,\dots,\lambda_n)$ is an $r$-complete partition of $m$. Then \eqref{w} must be solvable for $rm+1$ values of $w$. Since the right hand side attains at most $(r+1)^{n+1}$ distinct values, we have $rm+1\leq(r+1)^{n+1}$. Alternatively, by Lemma \ref{l1}, $\lambda_i\leq(r+1)^i$ for $i=0,1,\dots,n$, so that $rm\leq(r+1)^{n+1}-1$. In any case, we have $\lfloor\log_{r+1}(rm)\rfloor\leq n$, cf. \cite[Proposition~2.4]{park2}. On the other hand, for a given $m$, let $n=\lfloor\log_{r+1}(rm)\rfloor$. Order the $n+1$ positive integers $1,r+1,(r+1)^2,\ldots,(r+1)^{n-1}, k=m-\frac{1}{r}((r+1)^n-1)$ in increasing order $1=\lambda_0\leq\lambda_1\leq\cdots\leq\lambda_n$. We have $1\leq k\leq(r+1)^n$, and it follows that $\lambda$ is a minimal $r$-complete partition of $m$. \begin{lemma} \label{lem2} Let $\lambda$ be an $r$-complete partition of weight $m$ and length $n+1$. Then $\lambda$ is minimal if and only if \begin{equation} \label{min} n=\lfloor\log_{r+1}(rm)\rfloor. \end{equation} \end{lemma} We have shown that if $\lambda=(\lambda_0,\dots,\lambda_n)$ is a partition of weight $m$ with $\lambda_0=1$, then $\lambda$ is a minimal $r$-complete partition if and only if \eqref{eqlem1} and \eqref{min} hold. \section{Generating functions} \label{sec:gen} In order to determine the number $a_r(m)$ of minimal $r$-complete partitions of weight $m$, we first consider the number $q_n(m)$ of $r$-complete partitions of weight $m$ and length $n+1$. By Lemma \ref{lem2}, we know that such an $r$-complete partition is minimal if and only if $\frac{1}{r}((r+1)^n-1)+1\leq m \leq\frac{1}{r}((r+1)^{n+1}-1)$. Thus \begin{equation} \label{am} a_r(m)=q_n(m)\quad\text{if}\quad \frac{1}{r}\left((r+1)^n-1\right)+1 \leq m\leq\frac{1}{r}\left((r+1)^{n+1}-1\right). \end{equation} For the generating function $Q_n(x)$ of $q_n(m)$, we have \begin{equation} \label{Q} Q_n(x)=\sum_{m=n+1}^{(1/r)((r+1)^{n+1}-1)} q_n(m)x^m =\sum_{\lambda}x^{|\lambda|}, \end{equation} where we sum over the $\lambda$ satisfying $1=\lambda_0\leq\lambda_1\leq\cdots\leq\lambda_n$ and \eqref{eqlem1}. We change parameters by setting $\mu_i=(r+1)^i-\lambda_i$ for $i=0,1,\ldots,n$. Then the constraints, necessary for $\lambda$ being $r$-complete, become $\mu_0=0$, and \begin{equation} \label{mu} r(\mu_0+\cdots+\mu_{i-1})\leq\mu_i\leq r(r+1)^{i-1}+\mu_{i-1} \quad\mbox{for $i=1,\ldots,n$}. \end{equation} Moreover, \begin{equation} \label{lambdamu} |\lambda|=\frac{1}{r}((r+1)^{n+1}-1)-|\mu|, \end{equation} for $|\mu|=\mu_0+\cdots+\mu_n$. For a fixed $n$, we are interested in the number of solutions $\lambda$ of $|\lambda|=m$ for each $m$ in the interval $\frac{1}{r}((r+1)^n-1)+1 \leq m\leq\frac{1}{r}((r+1)^{n+1}-1)$, that is, the number of solutions $\mu$ of $|\mu|=k$ for each $k$ in the interval $0\leq k\leq(r+1)^n-1$. We write \begin{equation} \label{R} R_n(x)=\sum_{k\geq0} r_n(k)x^k=\sum_{\mu}x^{|\mu|}, \end{equation} where we sum over the $\mu$ satisfying $\mu_0=0$ and \eqref{mu}. We are interested in the coefficients $r_n(k)$ for $k<(r+1)^n$. Therefore we shall on some occasions truncate polynomials and formal power series under consideration. We shall use the order symbol $O(x^N)$ for truncation of order $N$. Thus, if we write \[ \sum_k b(k)x^k=\sum_k c(k)x^k+O(x^N), \] then $b(k)=c(k)$ for all $k