\documentclass[12pt,reqno]{article} \usepackage[usenames]{color} \usepackage{amssymb} \usepackage{graphicx} \usepackage{amscd} \usepackage[colorlinks=true, linkcolor=webgreen, filecolor=webbrown, citecolor=webgreen]{hyperref} \definecolor{webgreen}{rgb}{0,.5,0} \definecolor{webbrown}{rgb}{.6,0,0} \usepackage{color} \usepackage{fullpage} \usepackage{float} \usepackage{psfig} \usepackage{graphics,amsmath,amssymb} \usepackage{amsthm} \usepackage{amsfonts} \usepackage{latexsym} \usepackage{epsf} \setlength{\textwidth}{6.5in} \setlength{\oddsidemargin}{.1in} \setlength{\evensidemargin}{.1in} \setlength{\topmargin}{-.5in} \setlength{\textheight}{8.9in} \newcommand{\seqnum}[1]{\href{http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=#1}{\underline{#1}}} \begin{document} \begin{center} \epsfxsize=4in \leavevmode\epsffile{logo129.eps} \end{center} \begin{center} \vskip 1cm{\LARGE\bf Partial Sums of Powers of Prime Factors } \vskip 1cm \large Jean-Marie De Koninck\\ D\'epartement de Math\'ematiques et de Statistique\\ Universit\'e Laval\\ Qu\'ebec G1K 7P4\\ Canada\\ \href{mailto:jmdk@mat.ulaval.ca}{\tt jmdk@mat.ulaval.ca}\\ \ \\ Florian Luca\\ Mathematical Institute, UNAM\\ Ap. Postal 61-3 (Xangari)\\ CP 58 089\\ Morelia, Michoac\'an\\ Mexico\\ \href{mailto:fluca@matmor.unam.mx}{\tt fluca@matmor.unam.mx} \end{center} \vskip .2 in \begin{abstract} Given integers $k\ge 2$ and $\ell\ge 3$, let $S_{k,\ell}^*$ stand for the set of those positive integers $n$ which can be written as $n=p_1^k+p_2^k+\ldots+p_\ell^k$, where $p_1,p_2,\ldots,p_\ell$ are distinct prime factors of $n$. We study the properties of the sets $S^*_{k,\ell}$ and we show in particular that, given any odd $\ell\ge 3$, $\displaystyle{\#\bigcup_{k=2}^\infty S_{k,\ell}^*=+\infty}$. \end{abstract} \newtheorem{theorem}{Theorem}[section] \newtheorem{proposition}{Proposition}[section] \newtheorem{corollary}{Corollary}[section] \newtheorem{lemma}{Lemma}[section] %\usepackage{amsmath,amssymb,amsbsy,amsfonts,amsthm,latexsym, % amsopn,amstext,amsxtra,euscript,amscd} \newtheorem{lem}{Lemma} %\newtheorem{lemma}[lem]{Lemma} \newtheorem{prop}{Proposition} %\newtheorem{proposition}[prop]{Proposition} \newtheorem{thm}{Theorem} %\newtheorem{theorem}[thm]{Theorem} \newtheorem{cor}{Corollary} %\newtheorem{corollary}[cor]{Corollary} \newtheorem{prob}{Problem} \newtheorem{problem}[prob]{Problem} \newtheorem{ques}{Question} \newtheorem{question}[ques]{Question} %% DEFINITIONS \def\mand{\qquad\mbox{and}\qquad} \def\scr{\scriptstyle} \def\\{\cr} \def\({\left(} \def\){\right)} \def\[{\left[} \def\]{\right]} \def\<{\langle} \def\>{\rangle} \def\fl#1{\left\lfloor#1\right\rfloor} \def\rf#1{\left\lceil#1\right\rceil} \def\cA{{\mathcal A}} \def\cB{{\mathcal B}} \def\cC{{\mathcal C}} \def\cE{{\mathcal E}} \def\cF{{\mathcal F}} \def\cI{{\mathcal I}} \def\cL{{\mathcal L}} \def\cM{{\mathcal M}} \def\cN{{\mathcal N}} \def\cR{{\mathcal R}} \def\cS{{\mathcal S}} \def\cP{{\mathcal P}} \def\cQ{{\mathcal Q}} \def\cT{{\mathcal T}} \def\cX{{\mathcal X}} \def\N{{\mathbb N}} \def\Z{{\mathbb Z}} \def\eps{\varepsilon} \newcommand{\comm}[1]{\marginpar{\fbox{#1}}} %\begin{document} \section{Introduction} In \cite{kn:approx}, we studied those numbers with at least two distinct prime factors which can be expressed as the sum of a fixed power $k\ge 2$ of their prime factors. For instance, given an integer $k\ge 2$, and letting $$S_k:=\{n: \omega(n)\ge 2 \mbox{ and } n = \sum_{p|n}p^k\},$$ where $\omega(n)$ stands for the number of distinct prime factors of $n$, one can check that the following 8 numbers belong to $S_3$: \begin{eqnarray*} 378 & = & 2 \cdot 3^3 \cdot 7= 2^3+3^3+7^3, \\ 2548 & = & 2^2\cdot 7^2\cdot 13= 2^3+7^3+13^3, \\ 2\,836\,295 & = & 5\cdot 7 \cdot 11 \cdot 53 \cdot 139= 5^3+7^3+11^3+53^3+139^3,\\ 4\,473\,671\,462 &= & 2\cdot 13 \cdot 179 \cdot 593 \cdot 1621= 2^3 + 13^3 + 179^3 + 593^3 + 1621^3 ,\\ 23\,040\,925\,705 & = & 5 \cdot 7\cdot 167\cdot 1453 \cdot 2713 = 5^3+ 7^3+ 167^3+ 1453^3 + 2713^3, \\ 13\,579\,716\,377\,989 & = & 19 \cdot 157 \cdot 173 \cdot 1103 \cdot 23857= 19^3+ 157^3+ 173^3 + 1103^3 + 23857^3, \\ 21\,467\,102\,506\,955 & = & 5 \cdot 7^3 \cdot 313 \cdot 1439 \cdot 27791 = 5^3 + 7^3 + 313^3 + 1439^3 + 27791^3\\ 119\,429\,556\,097\,859 & = & 7\cdot 53\cdot 937\cdot 6983\cdot 49199= 7^3+53^3+937^3+6983^3+49199^3. \end{eqnarray*} In particular, we showed that 378 and 2548 are the only numbers in $S_3$ with exactly three distinct prime factors. \vskip 5pt We did not find any number belonging to $S_k$ for $k=2$ or $k\ge 4$, although each of these sets may very well be infinite. \vskip 5pt In this paper, we examine the sets $$S_k^*:=\{n: \omega(n)\ge 2 \mbox{ and } n={\sum_{p|n}}^*p^k\} \qquad (k=2,3,\ldots) ,$$ where the star next to the sum indicates that it runs over some subset of primes dividing $n$. For instance, $870\in S_2^*$, because $$870=2\cdot 3 \cdot 5 \cdot 29=2^2 + 5^2 +29^2.$$ Clearly, for each $k\ge 2$, we have $S_k^*\supseteq S_k$. Moreover, given integers $k\ge 2$ and $\ell\ge 3$, let $S_{k,\ell}^*$ stand for the set of those positive integers $n$ which can be written as $n=p_1^k+p_2^k+\ldots+p_\ell^k$, where $p_1,p_2,\ldots,p_\ell$ are distinct prime factors of $n$, so that for each integer $k\ge 2$, $$S_k^* = \bigcup_{\ell =3}^\infty S^*_{k,\ell}.$$ We study the properties of the sets $S^*_{k,\ell}$ and we show in particular that, given any odd $\ell\ge 3$, the set $\displaystyle{\bigcup_{k=2}^\infty S_{k,\ell}^*}$ is infinite. We treat separately the cases $\ell=3$ and $\ell\ge 5$, the latter case being our main result. In what follows, the letter $p$, with or without subscripts, always denotes a prime number. \section{Preliminary results} We shall first consider the set $S_2^*$. Note that if $n\in S_2^*$, then $P(n)$, the largest prime divisor of $n$, must be part of the partial sum of primes which allows $n$ to belong to $S_2^*$. Indeed, assume the contrary, namely that, for some primes $p_1