\documentclass[12pt,reqno]{article} \usepackage[usenames]{color} \usepackage{amssymb} \usepackage{graphicx} \usepackage{amscd} \usepackage[colorlinks=true, linkcolor=webgreen, filecolor=webbrown, citecolor=webgreen]{hyperref} \definecolor{webgreen}{rgb}{0,.5,0} \definecolor{webbrown}{rgb}{.6,0,0} \usepackage{color} \usepackage{fullpage} \usepackage{float} \usepackage{psfig} \usepackage{graphics,amsmath,amssymb} \usepackage{amsthm} \usepackage{amsfonts} \usepackage{latexsym} \usepackage{epsf} \setlength{\textwidth}{6.5in} \setlength{\oddsidemargin}{.1in} \setlength{\evensidemargin}{.1in} \setlength{\topmargin}{-.5in} \setlength{\textheight}{8.9in} \newcommand{\seqnum}[1]{\href{http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=#1}{\underline{#1}}} \begin{document} \begin{center} \epsfxsize=4in \leavevmode\epsffile{logo129.eps} \end{center} \newtheorem{theorem}{Theorem} \newtheorem{corollary}[theorem]{Corollary} \newtheorem{lemma}[theorem]{Lemma} \newtheorem{proposition}[theorem]{Proposition} \newtheorem{conjecture}[theorem]{Conjecture} \newtheorem{definition}[theorem]{Definition} \begin{center} \vskip 1cm{\LARGE\bf Special Multi-Poly-Bernoulli Numbers} \vskip 1cm \large Y. Hamahata and H. Masubuchi \\ Department of Mathematics \\ Tokyo University of Science \\ Noda, Chiba, 278-8510 \\ Japan \\ {\tt hamahata\_yoshinori@ma.noda.tus.ac.jp}\\ \end{center} \vskip .2in \begin{abstract} In this paper we investigate generalized poly-Bernoulli numbers. We call them multi-poly-Bernoulli numbers, and we establish a closed formula and a duality property for them. \end{abstract} \section{Introduction and background} Kaneko \cite{Kaneko1} introduced poly-Bernoulli numbers $B_n^{(k)}$ ($k\in\mathbb{Z}$, $n=0, 1, 2, \ldots$) which are generalizations of Bernoulli numbers. One knows that special values of certain zeta functions at non-positive integers can be described in terms of poly-Bernoulli numbers. Kaneko \cite{Kaneko2} suggests to study multi-poly-Bernoulli numbers, which are generalizations of poly-Bernoulli numbers, as an open problem. Kim and Kim \cite{Kim-Kim} consider them and give a relationship with special values of certain zeta functions. We consider special multi-poly-Bernoulli numbers. It seems for the authors that they are more natural than multi-poly-Bernoulli numbers when one tries to generalize the results of poly-Bernoulli numbers. The purpose of the present paper is to establish some results for them. To be more precise, we prove the closed formula and the duality for them. \par We briefly recall poly-Bernoulli numbers. For an integer $k\in\mathbb{Z}$, put $$ Li_k(z)=\sum_{n=1}^{\infty} \frac{z^n}{n^k}. $$ The formal power series $Li_k(z)$ is the $k$-th polylogarithm if $k\geq 1$, and a rational function if $k\leq 0$. When $k=1$, $Li_1(z)=-\log (1-z)$. Using $Li_k(z)$, one can introduce poly-Bernoulli numbers. The {\it poly-Bernoulli numbers} $B_n^{(k)}$ ($n=0, 1, 2, \ldots$) are defined by the generating series $$ \frac{Li_k(1-e^{-x})}{1-e^{-x}} =\sum_{n=0}^{\infty}B_n^{(k)} \frac{x^n}{n!} . $$ We find that for any $n\geq 0$, $B_n^{(1)}=B_n$, the classical Bernoulli number. \par For nonnegative integers $n$, $m$, put $$ \left\{\begin{array}{c}n\\ m\end{array}\right\} =\frac{(-1)^m}{m!} \sum_{l=0}^m(-1)^l \left(\begin{array}{c}m\\ l\end{array}\right) l^n . $$ We call it the {\it Stirling number of the second kind}. Kaneko obtained in \cite{Kaneko1} an explicit formula for $B_n^{(k)}$: \begin{theorem}[\cite{Kaneko1}]\label{1} For a nonnegative integer $n$ and an integer $k$, we have $$ B_n^{(k)}=(-1)^n\sum_{m=1}^{n+1} \frac{(-1)^{m-1}(m-1)! \left\{\begin{array}{c}n\\ m-1\end{array}\right\}} {m^k} . $$ \end{theorem} Using it, the following formula can be shown: \begin{theorem}[Closed formula \cite{Arakawa-Kaneko}]\label{2} For any $n, k\geq 0$, we have $$ B_n^{(-k)}=\sum_{j=0}^{\min (n,k)} (j!)^2 \left\{\begin{array}{c}n+1\\ j+1\end{array} \right\} \left\{\begin{array}{c}k+1\\ j+1\end{array} \right\} . $$ \end{theorem} \par By this theorem, we get \begin{theorem}[Duality \cite{Arakawa-Kaneko}, \cite{Kaneko1}]\label{3} For $n, k\geq 0$, $B_n^{(-k)}=B_k^{(-n)}$ holds. \end{theorem} \par The last theorem can be proved in another way. Namely, using Theorem~\ref{1}, we have \begin{theorem}[Symmetric formula \cite{Kaneko1}]\label{4} $$ \sum_{n=0}^{\infty}\sum_{k=0}^{\infty} B_n^{(-k)}\frac{x^n}{n!}\frac{y^k}{k!} =\frac{e^{x+y}}{e^x+e^y-e^{x+y}} . $$ \end{theorem} As corollary to this theorem, we have the duality theorem. \par We would like to extend these results to our generalized poly-Bernoulli numbers. \section{Multi-poly-Bernoulli numbers} In this section, we investigate generalized poly-Bernoulli numbers. First, we define a generalization of $Li_k(z)$. \begin{definition}\label{5}{\em For $k_1, k_2, \ldots , k_r\in\mathbb{Z}$, define $$ Li_{k_1,k_2,\ldots ,k_r}(z)= \sum_{m_1,\ldots ,m_r\in\mathbb{Z}\atop 0