\documentclass[12pt,reqno]{article} \usepackage[usenames]{color} \usepackage{amssymb} \usepackage{graphicx} \usepackage{amscd} \usepackage[colorlinks=true, linkcolor=webgreen, filecolor=webbrown, citecolor=webgreen]{hyperref} \definecolor{webgreen}{rgb}{0,.5,0} \definecolor{webbrown}{rgb}{.6,0,0} \usepackage{color} \usepackage{fullpage} \usepackage{float} \usepackage{psfig} \usepackage{graphics,amsmath,amssymb} \usepackage{amsthm} \usepackage{amsfonts} \usepackage{latexsym} \usepackage{epsf} \setlength{\textwidth}{6.5in} \setlength{\oddsidemargin}{.1in} \setlength{\evensidemargin}{.1in} \setlength{\topmargin}{-.5in} \setlength{\textheight}{8.9in} \newcommand{\seqnum}[1]{\href{http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=#1}{\underline{#1}}} \begin{document} \begin{center} \epsfxsize=4in \leavevmode\epsffile{logo129.eps} \end{center} \begin{center} \vskip 1cm{\LARGE\bf Congruences for a Class of Alternating \\ \vskip .1in Lacunary Sums of Binomial Coefficients } \vskip 1cm \large Karl Dilcher\\ Department of Mathematics and Statistics\\ Dalhousie University\\ Halifax, Nova Scotia B3H 3J5 \\ Canada\\ \href{mailto:dilcher@mathstat.dal.ca}{\tt dilcher@mathstat.dal.ca} \\ \end{center} \vskip .2 in \begin{abstract} An 1876 theorem of Hermite, later extended by Bachmann, gives congruences modulo primes for lacunary sums over the rows of Pascal's triangle. This paper gives an analogous result for alternating sums over a certain class of rows. The proof makes use of properties of certain linear recurrences. \end{abstract} \newtheorem{theorem}{Theorem} \newtheorem{corollary}[theorem]{Corollary} \newtheorem{lemma}[theorem]{Lemma} \newtheorem{proposition}[theorem]{Proposition} \newtheorem{conjecture}[theorem]{Conjecture} \section{Introduction} Given the importance of binomial coefficients and combinatorial sums in many areas of mathematics, it is not surprising that divisibility properties and congruences of these combinatorial objects have been extensively studied. For instance, numerous older results can be found in Dickson's {\it History\/} \cite[Ch.~IX]{Di}, while a more modern treatment of the subject is given by Granville \cite{Gr}. One such result is the following congruence due to Hermite \cite{He} and, in the general case, Bachmann \cite[p.~46]{Ba}. \begin{theorem}[Hermite and Bachmann] Let $p$ be a prime and $k$ a positive integer. Then \begin{equation}\label{1.1} \sum_{0s$), or the third one vanishes (when $j\leq s$). Next, when $j=p+1$, we have $j(p-1)=(p-1)p+(p-1)$, and $$ \binom{q(p-1)}{(p+1)(p-1)}\equiv \binom{1}{0}\binom{s-1}{p-1}\binom{p-s-1}{p-1} \equiv 0 \pmod{p} $$ for similar reasons as above. Thirdly, when $p+2\leq j\leq q-1$, we write $j=p+1+t$, $1\leq t