\documentclass[12pt,reqno]{article} \usepackage[usenames]{color} \usepackage{amssymb} \usepackage{graphicx} \usepackage{amscd} \usepackage[colorlinks=true, linkcolor=webgreen, filecolor=webbrown, citecolor=webgreen]{hyperref} \definecolor{webgreen}{rgb}{0,.5,0} \definecolor{webbrown}{rgb}{.6,0,0} \usepackage{color} \usepackage{fullpage} \usepackage{float} \usepackage{psfig} \usepackage{graphics,amsmath,amssymb} \usepackage{amsthm} \usepackage{amsfonts} \usepackage{latexsym} \usepackage{epsf} \setlength{\textwidth}{6.5in} \setlength{\oddsidemargin}{.1in} \setlength{\evensidemargin}{.1in} \setlength{\topmargin}{-.5in} \setlength{\textheight}{8.9in} \newcommand{\seqnum}[1]{\href{http://oeis.org/#1}{\underline{#1}}} \begin{document} \begin{center} \epsfxsize=4in \leavevmode\epsffile{logo129.eps} \end{center} \begin{center} \vskip 1cm{\LARGE\bf On Sums Involving Binomial Coefficients } \vskip 1cm \large S. Amghibech\\ Rue Wilfrid-L\'egar\'e \\ Qu\'ebec, QC \\ Canada\\ \href{mailto:amghibech@hotmail.com}{\tt amghibech@hotmail.com} \\ \end{center} \vskip .2 in \begin{abstract} We give closed forms for the series $\sum_{m=1}^{\infty}\frac{(2x)^{2m+2k}}{m^{2}(m+k) {2m \choose m}}$ and $\sum_{m=1}^{\infty}\frac{(2x)^{2m}(-1)^{m+k}}{m^{2}(m+k) {2m \choose m}}$ for integers $k \geq 0$. \end{abstract} \newtheorem{theorem}{Theorem}[section] \newtheorem{proposition}{Proposition}[section] \newtheorem{corollary}{Corollary}[section] \newtheorem{lemma}{Lemma}[section] \newcommand{\norm}[1]{\left\Vert#1\right\Vert} \newcommand{\abs}[1]{\left\vert#1\right\vert} \newcommand{\set}[1]{\left\{#1\right\}} \newcommand{\Real}{\mathbb R} \newcommand{\eps}{\varepsilon} \newcommand{\To}{\longrightarrow} \newcommand{\BX}{\mathbf{B}(X)} \newcommand{\A}{\mathcal{A}} \section{Introduction} D. H. Lehmer \cite{Leh} studied various series with binomial coefficients in the denominator, for example, \begin{eqnarray} \sum\limits_{m \geq 1} \frac{(2x)^{2m}}{m {2m \choose m}} &=& \frac{2x} {\sqrt {1-x^2}} \arcsin x , \end{eqnarray} valid for $|x| < 1$. In this note we consider some related results. \section{Main Results} The main results of the paper can be stated as follows: \begin{theorem}\label{theorem1} \begin{itemize} \item[(a)] For $t\in (-1,1)$ we have \begin{eqnarray*} \sum_{m = 1}^{\infty} \frac{(2t)^{2m+2k}}{m(2m+2k) {2m \choose m}} & = & \arcsin(t)^{2}{2k \choose k} +\sum_{j=1}^{k}{2k\choose k-j}\frac{(-1)^{j+1}}{j^{2}} \\ & + & \sum_{j=1}^{k}(-1)^{j}{2k\choose k-j}\left(\frac{2\arcsin t\sin(2j\arcsin t)}{j}+\frac{\cos(2j\arcsin t)}{j^{2}} \right) . \end{eqnarray*} \item[(b)] If we replace $t$ by $\sqrt{-1}t$, we get another form \begin{eqnarray*} \sum_{m = 1}^{\infty} \frac{(-1)^{m+k}(2t)^{2m+2k}}{m(2m+2k) {2m \choose m}} & = & -\log(t+\sqrt{1+t^{2}})^{2}{2k \choose k} +\sum_{j=1}^{k}{2k\choose k-j}\frac{(-1)^{j+1}}{j^{2}} \\ +\sum_{j=1}^{k}(-1)^{j}{2k\choose k-j} & & \left(\frac{(-t+\sqrt{t^{2}+1})^{2j}-(t+\sqrt{t^{2}+1})^{2j}}{j} \right)\log(t+\sqrt{t^{2}+1})\\ +\sum_{j=1}^{k}(-1)^{j}{2k\choose k-j} & & \left( \frac{(-t+\sqrt{t^{2}+1})^{2j}+(t+\sqrt{t^{2}+1})^{2j})}{2j^{2}} \right) . \end{eqnarray*} \end{itemize} \end{theorem} \begin{theorem}\label{theorem2} \begin{itemize} \item[(a)] For $t\in (-1,1)$ we have \begin{eqnarray*} \sum_{m = 1}^{\infty} \frac{(2t)^{2m+2k}}{m^{2}(2m+2k) {2m \choose m}} & = & \frac{ -(\arcsin t)^{2}}{k}{2k \choose k} +\frac{(2t)^{2k}}{k}(\arcsin t)^{2}-\sum_{j=1}^{k}{2k\choose k-j}\frac{(-1)^{j+1}}{kj^{2}} \\ & - & \sum_{j=1}^{k}(-1)^{j}{2k\choose k-j}\left(\frac{2\arcsin t\sin(2j\arcsin t)}{kj}+\frac{\cos(2j\arcsin t)}{kj^{2}} \right) . \end{eqnarray*} \item[(b)] The identity in (a) is valid if we replace $t$ by $it$ and $\arcsin(it)$ by $i\log(1+\sqrt{1+t^{2}})$: \begin{eqnarray*} \sum_{m = 1}^{\infty} \frac{(2t)^{2m+2k}(-1)^{m+k}}{m^{2}(2m+2k) {2m \choose m}} & = & \left( \frac{ 1}{k}{2k \choose k} -\frac{(2t)^{2k}}{k}\right)(\log(1+\sqrt{1+t^{2}}))^{2}-\sum_{j=1}^{k}{2k\choose k-j}\frac{(-1)^{j+1}}{kj^{2}} \\ -\sum_{j=1}^{k}(-1)^{j}{2k\choose k-j} & & \left(\frac{(-t+\sqrt{t^{2}+1})^{2j}-(t+\sqrt{t^{2}+1})^{2j}}{jk} \right)\log(t+\sqrt{t^{2}+1})\\ -\sum_{j=1}^{k}(-1)^{j}{2k\choose k-j} & & \left( \frac{(-t+\sqrt{t^{2}+1})^{2j}+(t+\sqrt{t^{2}+1})^{2j})}{2kj^{2}} \right) . \end{eqnarray*} \end{itemize} \end{theorem} We use the basic method to prove various combinatorial identities where binomial coefficients occur in the denominator. As a particular consequence of our results we get the sums $S_{1}(k),S_{2}(k),T_{1}(k),T_{2}(k)$ computed in \cite{Yan} in a compact form. \section{Proofs of the Theorems} \noindent {\it Proof of Theorem \ref{theorem1}.} We start with the following identity, which was discovered by D. H. Lehmer \cite{Leh}. If $|x| < 1$, then \begin{eqnarray}\label{1} \sum\limits_{m \geq 1} \frac{(2x)^{2m}}{m {2m \choose m}} &=& \frac{2x} {\sqrt {1-x^2}} \arcsin x . \end{eqnarray} If we replace $x$ by $\sqrt{-1}x$, we get another form of the identity (\ref{1}): \begin{eqnarray*} \sum\limits_{m \geq 1} \frac{(-1)^{m}(2x)^{2m}}{m {2m \choose m}} &=& \frac{-2x} {\sqrt {1+x^2}} \log(x+\sqrt{1+x^{2}}) \end{eqnarray*} If we multiply both members of the equation (\ref{1}) by $x^{2k-1}$ and then integrate, we obtain \begin{eqnarray*} \sum\limits_{m \geq 1} \frac{2^{2m}t^{2m+2k}}{m(2m+2k) {2m \choose m}} &=& \int_{0}^{t}\frac{2x^{2k}} {\sqrt {1-x^2}} \arcsin x dx . \end{eqnarray*} The left-hand side of this equation can be written $$ \int_{0}^{\arcsin t}2x(\sin(x))^{2k}dx=\frac{(-1)^{k}}{2^{2k-1}} \sum_{j=0}^{2k}{2k \choose j}(-1)^{j}\int_{0}^{\arcsin t}x\exp(2ix(k-j))dx $$ from which we get \begin{eqnarray*} \int_{0}^{\arcsin t}2x(\sin(x))^{2k}dx & = & \frac{(\arcsin t)^{2}}{2^{2k}}{2k \choose k} \\ & + &\frac{1}{2^{2k-1}} \sum_{j=1}^{k}(-1)^{j}{2k\choose k-j}\left(\frac{\tau\sin(2j\tau)}{j}+\frac{\cos(2j\tau)}{2j^{2}}- \frac{1}{2j^{2}}\right) \end{eqnarray*} where $\tau=\arcsin(t)$. Finally we get \begin{eqnarray*} \sum\limits_{m \geq 1} \frac{(2t)^{2m+2k}}{m(2m+2k) {2m \choose m}} & = & (\arcsin t)^{2}{2k \choose k} +\sum_{j=1}^{k}{2k\choose k-j}\frac{(-1)^{j+1}}{j^{2}} \\ & + & \sum_{j=1}^{k}(-1)^{j}{2k\choose k-j}\left(\frac{2(\arcsin t)\sin(2j\arcsin t)}{j}+\frac{\cos(2j\arcsin t)}{j^{2}} \right), \end{eqnarray*} which gives Theorem~\ref{theorem1}. \bigskip \noindent {\it Proof of Theorem~\ref{theorem1}.} \medskip If we integrate (\ref{1}) from $0$ to $x$ we obtain $$ \sum\limits_{m \geq 1} \frac{(2x)^{2m}}{m^{2} {2m \choose m}} =2(\arcsin x)^{2} $$ If we multiply both members of this equation by $x^{2k-1}$ and then integrate, we obtain \begin{eqnarray*} \sum\limits_{m \geq 1} \frac{2^{2m}t^{2m+2k}}{m^{2}(2m+2k) {2m \choose m}} &=& \int_{0}^{t}2x^{2k-1} (\arcsin x)^{2}dx . \end{eqnarray*} The left-hand side of can be written $$ \int_{0}^{t}2x^{2k-1} (\arcsin x)^{2}dx=\frac{t^{2k}}{k}(\arcsin t)^{2} -\frac{1}{k}\int_{0}^{t}\frac{2x^{2k}}{\sqrt{1-x^{2}}}\arcsin x dx. $$ By using the proof of Theorem~\ref{theorem1} we get Theorem~\ref{theorem2}. \begin{thebibliography}{9} \bibitem{Leh} D. H. Lehmer. Interesting series involving the central binomial coefficient. {\it Amer. Math. Monthly} {\bf 92} (1985), 449--457. \bibitem{Yan} Jin-Hua Yang and Feng-Zhen Zhao, \href{http://www.cs.uwaterloo.ca/journals/JIS/VOL9/Zhao/zhao20.html}{Sums involving binomial coefficients}, {\it Journal of Integer Sequences} {\bf 9} (2006), Article 06.4.2. \end{thebibliography} \bigskip \hrule \bigskip \noindent 2000 {\it Mathematics Subject Classification}: Primary 11B65. \noindent \emph{Keywords: } binomial coefficients, integral. \bigskip \hrule \bigskip \vspace*{+.1in} \noindent Received December 26 2006; revised version received January 11 2007. Published in {\it Journal of Integer Sequences}, January 15 2007. \bigskip \hrule \bigskip \noindent Return to \htmladdnormallink{Journal of Integer Sequences home page}{http://www.cs.uwaterloo.ca/journals/JIS/}. \vskip .1in \end{document} .