%% This article has been submitted and accepted for publication in %% THE FOATA FESTSCHRIFT, %% a special issue of THE ELECTRONIC JOURNAL OF COMBINATORICS %% dedicated to DOMINIQUE FOATA at the occasion of his 60th birthday. %% %% Author(s): ALUN MORRIS AND A. A. ABDEL-AZIZ %% Title: SCHUR $Q$-FUNCTIONS AND SPIN CHARACTERS OF SYMMETRIC GROUPS I %% Date of submission: March 31, 1995 %% TeX version: LaTeX %% File size (approx): 45 kB %% Number of pages: 12 %% Author's email: aom@aber.ac.uk %% %% \documentstyle[12pt]{article} % ------------ aberartn.sty starts here ----------------------- % % Modifications to the \theorem command % The spaces around the \ in the following two commands are necessary % \catcode`@=11 \renewcommand{\@begintheorem}[2] {\it\trivlist\item[\hskip\labelsep{\Theoremfont#1 \ #2}]} \renewcommand{\@opargbegintheorem}[3] {\it\trivlist\item[\hskip\labelsep{\Theoremfont#1 \ #2 \ (#3)}]} \catcode`@=12 % at signs are no longer letters \def\Theoremfont{\bf} %\def\Theoremfont{\smc} % % New theorem-like structures % \newtheorem{theorem}{Theorem}[section] \newtheorem{proposition}[theorem]{Proposition} \newtheorem{lemma}[theorem]{Lemma} \newtheorem{corollary}[theorem]{Corollary} \newtheorem{axiom}{Axiom} \newenvironment{example}% {\begin{trivlist}\refstepcounter{theorem}% \item[]{Example\ \thetheorem\ }}% {\end{trivlist}} \newenvironment{examples}% {\begin{trivlist}\refstepcounter{theorem}% \item[]{Examples\ \thetheorem\ }}% {\end{trivlist}} \newenvironment{remark}% {\begin{trivlist}\refstepcounter{theorem}% \item[]{Remark\ \thetheorem\ }}% {\end{trivlist}} \newenvironment{uremark}% unnumbered remark {\begin{trivlist}% \item[]{Remark\ }}% {\end{trivlist}} \newenvironment{definition}% {\begin{trivlist}\refstepcounter{theorem}% \item[]{Definition\ \thetheorem\ }}% {\end{trivlist}} \newenvironment{udefinition}% {\begin{trivlist}% \item[]{Definition\ }}% {\end{trivlist}} \newenvironment{proof}% {\begin{trivlist}% \item[]{Proof\ }}% {\hfill$\Box$\end{trivlist}} \newenvironment{lineno}% {\refstepcounter{equation}}% {\hfill(\theequation)\linebreak} % % Equation numbering % % \renewcommand{\theequation}{\thesection.\arabic{equation}} % \def\@eqnnum{{\rm (\theequation)}} % % The third level label is also put in parentheses. % \renewcommand{\labelenumiii}{(\theenumiii)} % % Allow lots of tables and figures % \setcounter{totalnumber}{10} \renewcommand{\topfraction}{0.5} \renewcommand{\bottomfraction}{0.5} \renewcommand{\textfraction}{0.1} \renewcommand{\floatpagefraction}{0.1} % % ------------ aberartn.sty ends here ----------------------- % \setlength{\textheight}{9in} \setlength{\textwidth}{6.75in} \setlength{\topmargin}{-.25in} \setlength{\oddsidemargin}{-0.25in} \setlength{\evensidemargin}{-0.25in} % \setcounter{section}{0} \newcounter{equationa} \def\theequation{\thesection.\arabic{equation}\alph{equationa}} \title{SCHUR $Q$-FUNCTIONS AND SPIN CHARACTERS OF SYMMETRIC GROUPS I} \author{A. O. Morris\thanks{% Department of Mathematics, University of Wales, Aberystwyth, Dyfed SY23 3BZ} \ and A. A. Abdel-Aziz\thanks{% Department of Mathematics, Faculty of Education in Abha, PO Box 9002, Abha, Saudi Arabia}\\ {\em Dedicated to Dominique Foata on his 60th birthday} } \date{\small Submitted: March 31, 1995; Accepted: November 15, 1995} \begin{document} \maketitle \pagestyle{myheadings} \markright{\sc the electronic journal of combinatorics 3 (2) (1996), \#R20\hfill} \thispagestyle{empty} \section{Introduction} In a classic paper, I. Schur [6] introduced a class of symmetric functions, now called Schur $Q$-functions, in order to determine the irreducible spin (projective) characters of symmetric groups. In the case of the ordinary characters of symmetric groups, going back to the early work of D. E. Littlewood and A. R. Richardson [3], the corresponding Schur functions have been used to give useful combinatorial formulae for determining explicit values for these characters (see for example [2]). Our aim in this paper is to obtain combinatorial formulae for the spin characters. We see that as always in the spin case, the formulae are considerably more complicated with a number of new interesting phenomena arising. \section{Notation and Preliminaries} \subsection{Compositions and partitions} If $\ell $ is a positive integer, then $\lambda =(\lambda _1,\ldots ,\lambda _m)$ is a {\it composition} of $\ell $ if $\lambda _i(i=1,\ldots ,m)$ are positive integers such that \[ \sum_{i=1}^m\lambda _i=\ell . \] If, in addition \[ \lambda _1\geq \lambda _2\geq \ldots \lambda _m>0 \] then $\lambda $ is a {\it partition} of $\ell $; $\lambda $ is called a {\it % strict} partition if \[ \lambda _1>\lambda _2>\ldots \lambda _m>0. \] When necessary, we write $\ell (\lambda )$ for $m$, the {\it length} of $% \lambda $ and $|\lambda |$ for $\ell $, the {\it weight }of $\lambda $. Let $% P(\ell )$ denote the set of partitions of $\ell $, $SP(\ell )$ the set of strict partitions of $\ell $ and $O(\ell )$ the set of partitions where all the parts $\lambda _i$ are odd. Also, we write $\lambda \setminus \{\lambda _i\}$ for the partition $\{\lambda _1,\ldots ,\lambda _{i-1},\lambda _{i+1},\ldots ,\lambda _m\}$, that is, with the $i$th part deleted with an obvious extension to the deletion of more parts. Partitions are also denoted as $\lambda = (1^{m_1}2^{m_2}\ldots)$, indicating that the part $i$ is repeated $m_i$ times. If $\lambda\in P(\ell)$, let \[U(\lambda) = \{\mu\in P(| \mu | \leq \ell)|\{ \mu_1,\ldots,\mu_{\ell(\mu)}\} \subseteq \{\lambda_1,\ldots,\lambda_m\},\] that is, $U(\lambda)$ is the set of {\it sub-partitions} of $\lambda$. For $% r \leq \ell$, let \[U(\lambda,r) = \{\mu\in U(\lambda)|\mu\in P(r)\},\] $% u(\lambda) = |U(\lambda)|,\ u(\lambda,r) = |U(\lambda,r)|$. Then, clearly $% U(\lambda,\ell) = \{\lambda\}$ and $u(\lambda) \leq 2^{\ell(\lambda)}$ and $% u(\lambda) = 2^{\ell(\lambda)}$ if and only if $\lambda\in SP(\ell)$. \begin{definition} A {\it separation} of $\lambda \in P(\ell )$ corresponding to the composition $w=(w_1,w_2,\ldots ,w_k)$ of $\ell $ is a $k$-set of partitions $% (\lambda ^{(1)},\lambda ^{(2)},\ldots ,\lambda ^{(k)})$ such that $\lambda ^{(i)}\in P(w_i)\ (i=1,\ldots ,k)$. \end{definition} A complete set of separations $(\lambda ^{(1)},\ldots ,\lambda ^{(k)})$ of $% \lambda $ corresponding to the composition $w=(w_1,\ldots ,w_k)$ can be obtained by the following algorithm. \[ \lambda ^{(1)}\in U(\lambda ,w_1),\ \lambda ^{(2)}\in U(\lambda \setminus \lambda ^{(1)},w_2),\ldots ,\lambda ^{(k)}\in U(\lambda \setminus (\lambda ^{(1)},\ldots ,\lambda ^{(k-1)}),w_k) \] where \[ U(\lambda )\supset U(\lambda \setminus \lambda ^{(1)})\supset U(\lambda \setminus (\lambda ^{(1)},\lambda ^{(2)}))\supset \ldots \supset U(\lambda \setminus (\lambda ^{(1)},\ldots ,\lambda ^{(k)}))=\emptyset . \] In this way, we form a tree of partitions of $0,w_1,\ldots ,w_k$ and corresponding to each branch of the tree is a separation of $\lambda $. For example, the separation of the partition $\lambda =(1^73^25)$ corresponding to the composition $w=(7,5,6)$ is represented by the following tree. % %-------------------------------------------------- % % THE FIRST PICTURE % %%% \input pict1.tex \setlength{\unitlength}{0.5mm} \begin{picture}(240,170) \put(25,10){($1^33$)} \put(55,10){($3^2$)} \put(80,10){($1^6$)} \put(105,10){(15)} \put(130,10){(15)} \put(155,10){$(1^33)$} \put(185,10){$(3^2)$} \put(33,20){\line(0,1){25}} \put(61,20){\line(0,1){25}} \put(86,20){\line(0,1){25}} \put(112,20){\line(0,1){25}} \put(136,20){\line(0,1){25}} \put(163,20){\line(0,1){25}} \put(192,20){\line(0,1){25}} \put(25,55){$(1^23)$} \put(55,55){$(1^5)$} \put(82,55){(5)} \put(105,55){$(1^5)$} \put(128,55){$(1^23)$} \put(159,55){(5)} \put(187,55){(5)} \put(33,65){\line(1,2){14}} \put(61,65){\line(-1,2){14}} \put(85,65){\line(1,2){14}} \put(113,65){\line(-1,2){14}} \put(135.5,65){\line(1,2){14}} \put(163.5,65){\line(-1,2){14}} \put(192,65){\line(0,1){27}} \put(39,100){$(1^25)$} \put(92,100){$(13^2)$} \put(140,100){$(1^43)$} \put(185,100){$(1^7)$} \put(47,110){\line(3,1){77}} \put(99,110){\line(1,1){25.25}} \put(149.5,110){\line(-1,1){25.25}} \put(189,109.5){\line(-5,2){65}} \put(122,145){$\emptyset$} \put(230,10){6} \put(230,55){5} \put(230,100){7} \end{picture} % %-------------------------------------------------- % \subsection{Hall-Littlewood Symmetric Functions} Let ${\bf x}=\{x_1,x_2,\ldots ,x_\ell \}$ be a set of $\ell $ independent indeterminates and $t$ an independent parameter. If $\alpha =(\alpha _1,\alpha _2,\ldots ,\alpha _\ell )\in {\bf Z}^\ell $, write $e^\alpha :=x_1^{\alpha _1}\ldots x_\ell ^{\alpha _\ell }$ and \[ \theta _\ell ({\bf {x}},t)=\prod_{1\leq i1$, then by Lemma \ref{l33} and the inductive assumption, we have \begin{displaymath} \begin{array}{ll} Q_\lambda({\bf x}) &= \frac {1}{2\mu} \sum_{\sigma\in S_{\underline m}/S_{{\underline m} \setminus {\underline 2}}} \epsilon(\sigma) Q_{(\lambda_{\sigma(1)},\lambda_{\sigma(2)})} ({\bf x}) \frac {1}{2^{\mu-1}(\mu-1)!} \sum_{\rho\in S_{({\underline m})\setminus \sigma(2)}} \epsilon(\rho) Q_{(\lambda_{\rho \sigma(3)},\lambda_{\rho\sigma(4)})} ({\bf x})\\ &\qquad \ldots Q_{(\lambda_{\rho\sigma(m-1)},\lambda_{\rho\sigma(m)}} ({\bf x})\\ \\ &= \frac {1}{2^\mu \mu!} \sum_{\sigma\in S_{\underline m}/S_{{\underline m}\setminus {\underline 2}}} \epsilon(\sigma) Q_{(\lambda_{\sigma(1)},\lambda_{\sigma(2)})} ({\bf x}) \sum_{\sigma'\in S_{{\underline m}\setminus 2}} \epsilon(\sigma') Q_{\lambda_{\sigma'(3)},\lambda_{\sigma'(4)})}({\bf x})\\ &\qquad \ldots Q_{\lambda_{(\sigma'(m-1)},\lambda_{\sigma'(m)})}({\bf x})\\ \\ &= \frac {1}{2^{\mu}\mu!} \sum_{\sigma\in S_m} \epsilon(\sigma) Q_{(\lambda_{\sigma(1)},\lambda_{\sigma(2)})}({\bf x}) Q_{(\lambda_{\sigma(3)},\lambda_{\sigma(4)})} ({\bf x}) \ldots Q_{(\lambda_{\sigma(m-1)},\lambda_{\sigma(m)})} ({\bf x}), \end{array} \end{displaymath} as required. The proof of (ii) is similar. \end{proof} The above result can be interpreted in terms of wreath products of certain groups; in fact, the hyperoctahedral group. If $\lambda =(\lambda _1,\ldots ,\lambda _m)$ where $m=2\mu $ is even, let \[ M=\{\{\lambda _1,\lambda _2\},\{\lambda _3,\lambda _4\},\ldots ,\{\lambda _{m-1},\lambda _m\}\} \] and if $\sigma \in S_m$, let \[ \sigma (M)=\{\{\lambda _{\sigma (1)},\lambda _{\sigma (2)}\},\{\lambda _{\sigma (3)},\lambda _{\sigma (4)}\},\ldots ,\{\lambda _{\sigma (m-1)},\lambda _{\sigma (m)}\}\}. \] If $H=\{\sigma \in S_m|\sigma (M)=M\}$, then $H$ is a subgroup of $S_m$ of order $2^\mu \mu !$. In fact, if $\pi =(12)(34)\ldots (m-1,m)\in S_m$, then $% H$ is the centralizer $C_{S_m}(\pi )$ of $\pi $ in $S_m$, which implies that $H\cong S_2\wr S_m$ (see [2,p.135]), the wreath product of $S_2$ by $S_m$, which is the hyperoctahedral group or the Weyl group of type $B_\mu $. Thus, the above results can be rewritten as \begin{theorem} For $m\geq 1$, we have (i) if $m=2\mu $ is even \[ Q_\lambda ({\bf x})=\sum_{\sigma \in S_m\setminus S_2\wr S_\mu }\epsilon (\sigma )Q_{(\lambda _{\sigma (1)},\lambda _{\sigma (2)})}({\bf x})\ldots Q_{(\lambda _{\sigma (m-1)},\lambda _{\sigma (m)})}({\bf x}) \] (ii) if $m=2\mu +1$ is odd \[ Q_\lambda ({\bf x})=\sum_{\sigma \in S_m\setminus S_2\wr S_\mu }\epsilon (\sigma )q_{\lambda _{\sigma (1)}}Q_{(\lambda _{\sigma (2)},\lambda _{\sigma (3)})}({\bf x})\ldots Q_{(\lambda _{\sigma (m-1)},\lambda _{\sigma (m)})}(% {\bf x}) \] \end{theorem} \section{Application to the Spin Characters of Symmetric \protect{\newline } Groups} As was mentioned earlier, Schur $Q$-functions were first introduced by Schur [6] in his work on the spin (projective) characters of symmetric groups (see also [1]). He showed that the irreducible spin characters of $S_\ell $ were parameterised by strict partition $\lambda \in SP(\ell )$, but that this correspondence is not one-to-one. In fact, if we say that $\lambda $ is even (odd) if $\ell -\ell (\lambda )$ is even (odd), there is one irreducible self-associate spin character $\zeta ^\lambda $ corresponding to $\lambda \in SP(n)$ if $\lambda $ is even and two irreducible associate spin characters $\zeta ^\lambda $ and $\zeta ^{\lambda ^{\prime }}$ if $\lambda $ is odd. The connection with Schur $Q$-functions is given by \begin{equation}\label{e415} Q_\lambda ({\bf x})=\sum_{\pi \in O(\ell )}2^{\frac 12(\ell (\lambda )+\ell (\pi )+\epsilon (\lambda ))}z_\pi ^{-1}\zeta _\pi ^\lambda p_\pi ({\bf x}) \end{equation} where $z_\pi =\prod_{i\geq 1}i^{m_i}m_i!$, where $m_i$ is the multiplicity of $i$ in the partition $\pi =(1^{m_1}3^{m_3}\ldots )$, $p_\pi ({\bf x})=p_1(% {\bf x})^{m_1}p_3({\bf x})^{m_3}\ldots (p_i({\bf x})=\sum_{k=1}^\ell x_k^i)$% , $\zeta _\pi ^\lambda $ is the value of the character $\zeta ^\lambda $ at the class $\pi $ and \[ \epsilon (\lambda )=\left\{ \begin{array}{ll} 0 & \mbox {if $\ell-\ell(\lambda)$ is even} \\ 1 & \mbox {if $\ell-\ell(\lambda)$ is odd.} \end{array} \right. \] This formula gives the value of $\zeta ^\lambda $ on the classes $\pi \in O(\ell )$ only; however, if $\lambda $ is even $\zeta _\pi ^\lambda =0$ if $% \pi \in P(\ell )\setminus O(\ell )$ and if $\lambda $ is odd $\zeta _\pi ^\lambda =\zeta _\pi ^{\lambda ^{\prime }}=\zeta _\pi ^{\lambda ^{\prime }}$ if $\pi \in O(\ell )$, while if $\pi \not\in O(\ell )$, $\zeta _\pi ^\lambda \neq 0$ only if $\pi =\lambda $ and then $\zeta _\lambda ^\lambda $ is given explicitly by \begin{equation}\label{e416} \zeta _\lambda ^\lambda =(-1)^{(-\ell (\lambda )+1)}{\sqrt{\frac{\lambda _1\lambda _2\ldots \lambda _{\ell (\lambda )}}2}} \end{equation} and $\zeta _\lambda ^{\lambda ^{\prime }}=-\zeta _\lambda ^\lambda $. Thus, formula (\ref{e415}) gives all the information required. In addition, we require \begin{equation}\label{e417} \zeta _\pi ^{(\ell )}=2^{\frac 12(\ell (\sigma )-1-\epsilon )} \end{equation} where \[ \epsilon =\left\{ \begin{array}{ll} 1 & \mbox {if $\ell$ is odd} \\ 0 & \mbox {if $\ell$ is even} \end{array} \right. \] and \begin{equation}\label{e418} q_\ell ({\bf x})=\sum_{\pi \in O(\ell )}2^{\ell (\pi )}z_\pi ^{-1}p_\pi (% {\bf x}). \end{equation} Both results are originally due to Schur [6]; in fact (\ref{e418}) is (\ref{e415}) for the particular case $\lambda =(\ell )$ using the value given by (\ref{e417}) for the character $\zeta _\pi ^{(\ell )}$. Our intention now is to give a recursive formula for the calculation of the $% \zeta_\pi^\lambda$ based on the preceding work on Schur $Q$-functions. We shall assume from now on that $\pi = (1^{m_1}3^{m_3}\ldots) \in O(\ell)$. Let $\{\pi^1$, $\pi^2$, $\ldots$, $\pi^m\}$ be a separation of $\pi$; then we note that \begin{equation}\label{e419} \frac {z_\pi}{z_{\pi^1}z_{\pi^2}\ldots z_{\pi^m}} = \frac {y_\pi} {y_{\pi^1}y_{\pi^2}\ldots y_{\pi^m}}, \end{equation} where $y_\pi = \prod_{i\geq 1} m_i!$ (recall that $z_\pi = \prod_{i\geq 1} i^{m_i}m_i!$). We first give an explicit formula for $\zeta_\pi (r,s)\ (r>s)$, that is for two part partitions. We prove \begin{theorem} If $\lambda =(r,s)\in SP(\ell )$ $(r>s)$, $\pi \in O(\ell )$, then \[ \zeta _\pi ^{(r,s)}=2^{\frac 12(\ell (\pi )-2-\epsilon )}y_\pi \left\{ \sum_{(\pi _r,\pi _s)=\pi }y_{\pi _r}^{-1}y_{\pi _s}^{-1}+2\sum_{j=1}^s(-1)^j\left( \sum_{(\pi _{r+j},\pi _{s-j})}y_{r+j}^{-1}y_{s-j}^{-1}\right) \right\} , \] where the sums are taken over all separations $(\pi _{r+j},\pi _{s-j})$ of $% \pi $ corresponding to the composition (partition) $(r+j,s-j)$ and $\epsilon =0(1)$ if $\ell $ is even (odd). \end{theorem} \begin{proof} For the partition $(r,s)\in SP(\ell)$, (\ref{e415}) becomes \begin{equation}\label{e420} Q_{(r,s)}({\bf x}) = \sum_{\pi\in O(\ell)} 2^{\frac {1}{2}(\ell(\pi)+2+\epsilon)} z_\pi^{-1}\zeta_\pi^{(r,s)} p_\pi({\bf x}), \end{equation} where $\epsilon=0(1)$ if $\ell$ is even (odd). Now, by substituting (\ref{e418}) and (\ref{e420}) in Theorem 2.2(i), we obtain \begin{displaymath} \sum_{\pi\in O(\ell)} 2^{\frac {1}{2}(\ell(\pi)+2+\epsilon)} z_\pi^{-1}\zeta^{(r,s)}_\pi p_\pi({\bf x}) = \left( \sum_{\pi_r\in O(r)} z^{-1}_{\pi_r} 2^{\ell(\pi_r)} p_{\pi_r}({\bf x})\right) \left(\sum_{\pi_s\in O(s)} z_{\pi_s}^{-1} 2^{\ell(\pi_s)} p_{\pi_s({\bf x})}\right) \end{displaymath} \begin{displaymath} + 2 \sum_{j=1}^s (-1)^j \left( \sum_{\pi_{r+j}\in O(r+j)} z^{-1}_{\pi_{r+j}} 2^{\ell(\pi_{r+j})} p_{\pi_{r+j}}({\bf x})\right) \end{displaymath} \begin{displaymath} = \sum_{(\pi_r,\pi_s)=\pi\in O(\ell)} z_{\pi_r}^{-1} z_{\pi_s}^{-1} 2^{\ell(\pi)} p_\pi ({\bf x}) + 2\sum_{j=1}^s (-1)^j \sum_{(\pi_{r+j},\pi_{s-j})=\pi\in O(\ell)} z^{-1}_{\pi_{r+j}} z^{-1}_{\pi_{s-j}} 2^{\ell(\pi)} p_\pi ({\bf x}), \end {displaymath} where the sums are taken over all separations $(\pi_{r+j},\pi_{s-j})$ of $\pi$ corresponding to the composition $(r+j,s-j)$. Now, by comparing the coefficients of $p_\pi({\bf x})$ on both sides of this equation and using (4.19), we obtain the required result. \end{proof} Thus, the calculation of $\zeta_\pi^{(r,s)}$ for $\pi\in O(\ell)$, is reduced to a calculation involving the separation of partitions and is given in combinatorial terms. \noindent {\bf Example:} We calculate $\zeta^{(6,3)}_{(1^63)}$. The separations of $(1^63)$ corresponding to the composition \\$(6$, $3)$, $(7$, $% 2)$, $(8$, $1)$ and $(9)$ are $(\{(1^6)$, $(3)\}$, $\{(1^33)$, $(1^3)\})$, $% \{(1^43)$, $(1^2)\}$, $\{(1^53)$, $(1)\}$ and \\ $\{(1^63),\emptyset\}$ respectively. Thus \[ \begin{array}{ll} \chi^{(6,3)}_{(1^63)} & = 2^26!\left\{ \left( \frac {1}{6!} + \frac {1}{3!3!}\right) + 2\left(- \frac {1}{4!2!} + \frac {1}{5!} - \frac {1}{6!}\right)\right\} \\ & = 4. \end{array} \] We now use the expansion of the Schur $Q$-functions $Q_\lambda({\bf x})$ in terms of products of Schur $Q$-functions corresponding to two-part partitions to give a combinatorial formula for $\zeta_\pi^\lambda$ in the general case. We use Theorem 3.5 (or Theorem 3.4). We prove \begin{theorem} (i) If $m=2\mu $ is even and $\lambda =(\lambda _1,\ldots ,\lambda _m)\in SP(\ell )$, $\pi =(1^{m_1}3^{m_3}\ldots )\in O(\ell )$, $I=\{1,3,5,\ldots ,m-1\}$, then \[ \zeta _\pi ^\lambda =\sum_{\sigma \in S_m/S_2\wr S_\mu }\epsilon (\sigma )\left\{ \sum_{(\pi _1^\sigma ,\pi _3^\sigma ,\ldots )=\pi }y_\pi \left( \prod_{i\in I}y_{\pi_i^\sigma}^{-1}\right) 2^{\frac 12(-\epsilon +\sum_{i\in I}\epsilon _i^\sigma )}\prod_{i\in I}\zeta_{{\pi _i^\sigma }}^{(\lambda _{\sigma (i)},\lambda _{\sigma (i+1)})}\right\} , \] where for each $i\in I$, $\pi _i^\sigma =\pi _{(\lambda _{\sigma (i)},\lambda _{\sigma (i+1)})}\in O(|\lambda _{\sigma (i)}|+|\lambda _{\sigma (i+1)}|)$, $\epsilon _i^\sigma =0(1)$ if $|\lambda _{\sigma (i)}|+|\lambda _{\sigma (i+1)}|$ is even (odd), $\epsilon =0(1)$ if $\ell $ is even (odd), and the sum is taken over all separations $(\pi _1^\sigma ,\pi _3^\sigma ,\ldots ,\pi _{m-1}^\sigma )$ of $\pi $. \noindent (ii) If $m=2\mu +1$ is odd and $\lambda =(\lambda _1,\ldots ,\lambda _m)\in SP(\ell )$, $\pi =(1^{m_1}3^{m_3}\ldots )\in O(\ell )$,\\ $J=\{2,4,\ldots ,m-1\}$, then \[ \zeta _\pi ^\lambda =\sum_ {\sigma \in S_m/S_2\wr S_\mu } \epsilon(\sigma) \left\{ \sum_{(\pi _{\lambda _{\sigma (1)}},\pi _2^\sigma ,\pi _4^\sigma,\ldots ,\pi _{m-1}^\sigma )=\pi} y_\pi y_{\pi _{\lambda _{\sigma (1)}}}^{-1}\prod_{j\in J}y_{\pi _j^\sigma }^{-1}\right. \] \[ 2^{\frac 12(-\epsilon +\epsilon _{\sigma (1)}+\sum_{j\in J}\epsilon _j^\sigma ))}\zeta _{\pi _{\lambda _{\sigma (1)}}}^{(\lambda _{\sigma (1)})}\prod_{j\in J}\zeta _{\pi _j^\sigma }^{(\lambda _{\sigma (j)},\lambda _{\sigma (j+1)}}), \] where for each $j\in J$, $\pi _j^\sigma =\pi _{(\lambda _{\sigma (j)},\lambda _{\sigma (j+1)})}\in O(|\lambda _{\sigma (j)}|+|\lambda _{\sigma (j+1)}|),$ $\epsilon _j^\sigma =0(1)$ if $|\lambda _{\sigma (j)}|+|\lambda _{\sigma (j+1)}|$ is even (odd), $\epsilon _{\sigma (1)}=0(1)$ if $|\lambda _{\sigma (1)}|$ is odd (even), $\epsilon =0(1)$ if $\ell $ is odd (even) and the summation is over all separations $(\pi _{\lambda _{\sigma (1)}},\pi _2^\sigma ,\pi _4^\sigma ,\ldots ,\pi _{m-1}^\sigma )$ of $\pi $ corresponding to the composition. \end{theorem} \begin{proof} We prove (i) only; the proof of (ii) is similar. From Theorem 3.5(i) and (\ref{e415}) we obtain \begin{displaymath} \sum_{\pi\in O(\ell)} 2^{\frac{1}{2}(m+\ell(\pi)+\epsilon)} z_\pi^{-1} \zeta^{\lambda}_\pi p_\pi({\bf x}) \end{displaymath} \begin{displaymath} =\sum_{\sigma\in S_m/S_2\wr S_\mu} \epsilon(\mu) \prod_{i\in I} \sum_{\pi_i^\sigma} 2^{\frac{1}{2}(2+\ell(\pi_i^\sigma) + \epsilon_i^\sigma)} z_{\pi_i^\sigma}^{-1} \zeta_{\pi_i^\sigma}^{(\lambda_{\sigma(i)},\lambda_{\sigma(i+1)}} p_{\pi_i^\sigma} ({\bf x}). \end{displaymath} Since, if $\{\pi^1,\pi^2,\pi^3,\ldots,\pi^m\}$ is a separation of $\pi\in O(\ell)$, we have $\ell(\pi) = \sum_{i=1}^m \ell(\pi^i)$, $p_\pi({\bf x}) = %%%% \Prod_{i=1}^m p_{\pi_i} ({\bf x})$, \prod_{i=1}^m p_{\pi_i} ({\bf x})$, and using (\ref{e419}) and comparing the coefficients of $p_\pi({\bf x})$ on both sides of the above, we obtain the desired formula. \end{proof} \noindent {\bf Remark 1:} We note that simplifications of the above formula can be obtained in most cases; that is, in case (i) \[ 2^{\frac{1}{2}(-\epsilon + \sum_{i\in I}\epsilon_i^\sigma)} = 1 \] in the following cases: \begin{enumerate} \item[(a)] if $\ell $ is even and the parts of $\lambda $ are all even or are all odd, \item[(b)] if $\ell $ is odd and all the parts of $\lambda $ except one are even or are odd, \end{enumerate} and in case (ii) \[ 2^{\frac{1}{2}(\epsilon+\epsilon_{\sigma(1)} + \sum_{j\in J} \epsilon_j^\sigma)} = 1 \] in the following cases \begin{enumerate} \item[(a)] if $\ell $ is even and all the parts of $\lambda $ are either even or are odd except $\lambda _{\sigma (1)}$, \item[(b)] if $\ell $ is odd and all the parts of $\lambda $ are either odd or are even except for $\lambda _{\sigma (1)}$. \end{enumerate} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Furthermore, in order to apply these formulae, we require to determine left coset representatives of $S_2\wr S_\mu$ in $S_m$ for both $m=2\mu$ and $% 2\mu+1$. We note that \[ [S_m:S_2\wr S_\mu] = \left\{ \begin{array}{cc} 1\cdot 3\cdot \ldots .m-1 & \mbox {if}\ m=2\mu\ \mbox {is even,} \\ 1\cdot 3\cdot \ldots \cdot m & \mbox {if}\ m=2\mu+1\ \mbox {is odd.} \end{array} \right. \] If $m=2\mu$ is even, left coset representatives of $S_2\wr S_\mu$ in $S_m$ are of the form $\psi = x_1x_2\ldots x_{m-1}$, where $x_i = (x_{i1},x_{i2})$ are transpositions determined inductively as follows: \begin{enumerate} \item[(i)] Put $I_1=\{2,\ldots ,m\}$, then $x_{11}=2,\ x_{12}=k_1,\ k_1\in I_1$. \item[(ii)] Put $I_2=I\setminus \{x_{11},x_{12}\}$, $d_2=\min I_2$, then $% x_{21}=d_2,\ x_{22}=k_2,\ k_2\in I_2$ unless $k_1=2$, in which case $% x_{21}=d_2+1$. \item[(iii)] Put $I_r=I_{r-1}\setminus\{x_{r-1,1},x_{r-1,2}\},\ d_r=\min I_r$, then $x_{r1}=d_r,\ x_{r2}=k_r,\ k_r\in I_r$, unless $k_{r-1}=d_{r-1}$, in which case $x_{r2}=d_{r-1}+1$. \end{enumerate} For example, the left coset representatives of $S_2\wr S_3$ in $S_6$ are given as follows % %-------------------------------------------------- % \[ %%% SECOND PICTURE TO GO IN HERE %%% \input pict2.tex \begin{picture}(250,117) \put(0,10){(44)}\put(15,10){(45)}\put(30,10){(46)} \put(50,10){(44)}\put(65,10){(45)}\put(80,10){(46)} \put(100,10){(33)}\put(115,10){(35)}\put(130,10){(36)} \put(150,10){(33)}\put(165,10){(34)}\put(180,10){(36)} \put(200,10){(33)}\put(215,10){(34)}\put(230,10){(36)} \multiput(7,20)(50,0){5}{\line(1,2){15}} \multiput(22,20)(50,0){5}{\line(0,1){30}} \multiput(37,20)(50,0){5}{\line(-1,2){15}} \put(15,57){(22)}\put(65,57){(23)}\put(115,57){(24)} \put(165,57){(25)}\put(215,57){(26)} \put(22,67){\line(5,1){100}} \put(72,67){\line(5,2){50}} \put(122,67){\line(0,1){20}} \put(172,67){\line(-5,2){50}} \put(222,67){\line(-5,1){100}} \put(120,92){$e$} \end{picture} \] % %-------------------------------------------------- % that is, $\{e$, $(45)$, $(46)$, $(23)$, $(23)(45)$, $(23)(46)$, $(24)$, $% (24)(35)$, $(24)(36)$, $(25)$,\break \noindent $(25)(34)$, $(25)(36)$, $(26)$, $(26)(34)$, $(26)(35)\}$. %THIS IS ADDED ON Similarly, if $m=2\mu+1$ is odd, the left coset representatives of $S_2\wr S_\mu$ in $S_m$ are of the form $\phi = \phi_1\psi$, where $\phi_1$ can be any of the $m$ transpositions $(1,k)$ $(1\leq k\leq m)$ and $\psi$ is obtained in exactly the same way as the above but now applied to the set $% J=\{3,4,\ldots,m=2\mu+1\}$ in place of $I = \{2,\ldots,2\mu\}$. Thus, for example, the left coset representatives of $S_2\wr S_2$ in $S_5$ are \\ $\{e$, $% (12)$, $(13)$, $(14)$, $(15)\}\times \{e$, $(34)$, $(35)\} = \{e$, $(34)$, $% (35)$, $12)$, $(12)(34)$, $(12)(35)$, $(13)$, $(13)(34)$, $(13)(35)$,% $(14)$, $(14)(34)$, $(14)(35)$, $(15)$, $(15)(34)$, $(15)(35)\}$. \noindent {\bf Example 1:} The values of the character $\zeta^{(6,4,3,2)}$ of $S_{15}$ are calculated at the classes $(1^23^27)$ and $(3,5,7)$. In this case, as $(\lambda_1,\lambda_2,\lambda_3,\lambda_4) = (6,4,3,2)$, the relevant left coset representatives are $e,(23),(24)$; thus, by Theorem 4.2(i) and Remark 1(i), we have \[ \zeta^{(6,4,3,2)}_{(1^23^27)} = \frac {2!2!}{2!} \zeta^{(6,4)}_{(3,7)} \zeta^{(3,2)}_{(1^23)} - \frac {2!2!}{2!2!} \zeta^{(6,3)}_{(1^27)} \zeta^{(4,2)}_{(3^2)} \] \[ + \frac{2!2!}{2!} \zeta^{(6,2)}_{(1,7)} \zeta^{(4,3)}_{(1,3^2)} + \frac {2!2!}{2!2!} \zeta^{(6,2)}_{(1^23^2)} \zeta^{(4,3)}_{(7)}, \] noting that $((3,7),(1^23,\phi))$ and $((1^27,\phi),(3^2,\phi))$ are the only separations of $(1^23^27)$ corresponding to $((6,4),(3,2))$ and $% ((6,3),(4,2))$ respectively, while there are two separations $% ((1,7),(13^2,\phi))$ and $((1^23^2),\phi),((7),\phi)$ of $(1^23^27)$ corresponding to $((6,2),(4,3,1))$. Now by means of Theorem 4.1, we find that \[ \zeta^{(6,4)}_{(3,7)} = 0,\quad \zeta^{(3,2)}_{(1^2,3)} = -1,\quad \zeta^{(6,3)}_{(1^27)} = 0,\quad \zeta^{(4,2)}_{(3^2)} = 2,\quad \zeta^{(6,2)}_{(17)} = 0, \] \[ \zeta^{(4,3)}_{(13^2)} = 2,\quad \zeta^{(6,2)}_{(1^23^2)} = -2,\quad \zeta^{(4,3)}_{(7)} = -1. \] Thus \[ \zeta^{(6,4,3,2)}_{(1^23^27)} = \zeta^{(6,2)}_{(1^23^2)}\zeta^{(4,3)}_{(7)} = 2. \] Since the partition $(3,5,7)$ has no separations corresponding to $\pi_9\in O(9)$, $\pi_6 \in O(6)$, we have \[ \zeta_{(3,5,7)}^{(6,4,3,2)} = \zeta^{(6,4)}_{(3,7)} \zeta_{(5)}^{(3,2)} + \zeta^{(6,2)}_{(3,5)} \zeta^{(4,3)}_{(7)} \] \[ =0\cdot 1 - 2\cdot (-1) = +2. \] \noindent {\bf Example 2:} The values of the character $\zeta^{(5,4,3,2,1)}$ of $S_{15}$ are calculated at the classes $(1^23^27)$ and $(3,5,7)$. In this case, there are terms corresponding to the 15 left coset representatives of $% S_2\wr S_2$ in $S_5$ listed above. However, since $\zeta^{(5,3)}_{(1,7)} = \zeta^{(5,4)}_{(1^27)} = \zeta^{(4,1)}_{(1^23)} = \zeta^{(5,2)}_{(13^2} = 0$% , then by Theorem 4.2(ii) and Remark 1(ii) and taking the only possible separations of $(1^23^27)$ we obtain \[ \zeta^{(5,4,3,2,1)}_{(1^23^27)} = \frac{2!2!}{2!} \cdot 2\zeta^{(5)}_{(1^23)} \zeta^{(4,3)}_{(7)} \zeta^{(2,1)}_{(3)} + \frac {2!2!}{1}\cdot 2\cdot \zeta^{(4)}_{(1,3)} \zeta^{(5,2)}_{(7)} \zeta^{(3,1)}_{(1,3)} \] \[ - (-\frac{2!2!}{2!2!} \cdot 2\zeta^{(2)}_{(1^2)} \zeta^{(2)}_{(1^2)} \zeta^{(5,1)}_{(3^2)} \zeta^{(4,3)}_{(7)}) + \frac{2!2!}{2!}% \cdot 2\cdot \zeta^{(1)}_{(1)} \zeta_{(7)}^{(5,2)} \zeta^{(4,3)}_{(13^2)}. \] Again, by Theorem 4.1, we have $\zeta^{(4,3)}_{(7)} = -1,\ \zeta_{(3)}^{(2,1)} = -1, \zeta^{(5,2)}_{(7)} = 1, \zeta_{(1,3)}^{(3,1)} = - (-1), \zeta^{(5,1)}_{(3^2)} = -2$ and $\zeta^{(4,3)}_{(13^2)} = 2$, and by (4.17), we have $\zeta^{(5)}_{(1^23)} = 2, \zeta^{(4)}_{(13)} = 1,\zeta^{(2)}_{(1^2)} = 1$ and $\zeta^{(1)}_{(1)} = 1$. Thus, we have \[ \zeta^{(5,4,3,2,1)}_{(1^23^27)} = 4. \] Due to the separation process, there are only two terms to be considered for the class $(3,5,7)$ and we obtain \[ \begin{array}{ll} \zeta^{(5,4,3,2,1)}_{(3,5,7)} & = 2\zeta^{(5)}_{(5)} \zeta_{(7)}^{(4,3)} \zeta^{(2,1)}_{(3)} - 2\zeta^{(3)}_{(3)} \zeta_{(7)}^{(5,2)} \zeta_{(5)}^{(4,1)} \\ & = 2\cdot 1\cdot (-1)\cdot (-1) -2\cdot 1\cdot 1\cdot (-1 )= 4. \end{array} \] \begin{thebibliography}{9} \bibitem{H-H} P.N. Hoffman and J.F. Humphreys: {\em Projective Representations of the Symmetric Groups - Q-functions and Shifted Tableaux}, Clarendon Press, Oxford, 1992. \bibitem{J-K} G.D. James and A. Kerber: {\em The Representation Theory of the Symmetric Group}, Addison-Wesley, Reading, Mass., 1981. \bibitem{L-R} D.E. Littlewood and A.R. Richardson: Group characters and algebras, Phil. Trans. Roy. Soc. London, Ser A 233 (1934). \bibitem{Md} I.G. Macdonald: {\em Symmetric Function and Hall Polynomials}, Clarendon Press, Oxford, 1979. \bibitem{Mo} A.O. Morris: The spin representations of the symmetric group, Proc. London Math. Soc. (3), 12 (1962), 55-76. \bibitem{S} I. Schur: \"Uber die Darstellungen der symmetrischen und der alternierenden Gruppe durch gebrochen lineare Substituionen, J. f\"ur Math. 139 (1911), 155-250. \end{thebibliography} \end{document} .