%% This article has been submitted and accepted for publication in %% THE FOATA FESTSCHRIFT, %% a special issue of THE ELECTRONIC JOURNAL OF COMBINATORICS %% dedicated to DOMINIQUE FOATA at the occasion of his 60th birthday. %% %% Author(s): SHALOSH B. EKHAD AND J.E. MAJEWICZ %% Title: A SHORT WZ-STYLE PROOF OF ABEL'S IDENTITY %% Date of submission: Februaray 17, 1995 %% TeX version: AMSTeX %% File size (approx): 3 kB %% Number of pages: 1 %% Author's email: ekhad@euclid.math.temple.edu %% %% %------version of March 1, 1995 \font\smcp=cmcsc8 \noindent{\smcp the electronic journal of combinatorics 3 (2) (1996), \#R16\hfill\folio} \vskip 1in \input amstex \documentstyle{amsppt} \pagewidth{6.5truein} \pageheight{9truein} \TagsOnRight \topmatter \title A short WZ-style proof of Abel's identity \endtitle \author Shalosh B. Ekhad and John E. Majewicz \endauthor \address Department of Mathematics, Temple University, Philadelphia, PA 19122\endaddress \date Submitted: February 17, 1995; Accepted: July 25, 1995\enddate \abstract Using a certification procedure for Abel-type sums, we present a computerized proof of Abel's identity. \endabstract \email ekhad\@math.temple.edu, jmaj\@euclid.math.temple.edu \endemail \dedicatory Dedicated to Dominique Foata on the occasion of his sixtieth birthday. \enddedicatory \endtopmatter \document Abel's identity \cite{1},\cite{2} can be proved in many ways, including the elegant combinatorial methods of \cite{3}. Here we present the first computer-generated proof using the methods introduced in \cite{4}. \proclaim{Theorem(\cite{1}; \cite{2}, p.128)} For $n\ge0$: $$ \sum_{k=0}^n\binom{n}{k}(r+k)^{k-1}(s-k)^{n-k}=\frac{(r+s)^n}{r} \, .\tag1 $$ \endproclaim \demo{Proof} Let $F_{n,k}(r,s)$ and $a_n(r,s)$ denote, respectively, the summand and sum on the LHS of (1), and let $G_{n,k}:=(s-n)\binom{n-1}{k-1}(k+r)^{k-1}(s-k)^{n-k-1}$. Since $$ F_{n,k}(r,s)-sF_{n-1,k}(r,s)-(n+r)F_{n-1,k}(r+1,s-1) +(n-1)(r+s)F_{n-2,k}(r+1,s-1)=G_{n,k}-G_{n,k+1} \,, $$ (check!), we have by summing from $k=0$ to $k=n$, thanks to the telescoping on the right: $$ a_n(r,s)-sa_{n-1}(r,s)-(n+r) a_{n-1}(r+1,s-1)+ (n-1)(r+s) a_{n-2}(r+1,s-1)=0. $$ Since $(r+s)^n\cdot r^{-1}$ also satisfies this recurrence (check!) with the same initial conditions $a_0(r,s)=r^{-1}$ and $a_1(r,s)=(r+s)\cdot r^{-1}$, $(1)$ follows.\qed We thank Herb Wilf for a great shrinking comment on an earlier (much longer) version. \enddemo \Refs \ref \no 1 \by N. Abel \pages 159-60 \paper Beweis eines Ausdruckes, von welchem die Binomial-Formel ein einzelner Fall ist \yr 1826 \jour Crelle's J. Mathematik \endref \ref \no 2 \by Louis Comtet \book Advanced Combinatorics \publ D. Reidel Publ. Co. \publaddr Dordrecht/Boston \yr 1974 \page 128 \endref \ref \no 3 \by D. Foata \pages 181-186 \paper Enumerating k-Trees \yr 1971 \jour Disc. Math. \endref \ref \no 4 \by J. Majewicz \paper WZ-type certification procedures and Sister Celine's technique for Abel-type sums, \jour to appear (also available via anonymous ftp to ftp.math.temple.edu in directory pub/jmaj ) \endref \endRefs \enddocument .