% A AMStex file for a 3 page document \magnification=\magstep1 \input amstex \documentstyle{amsppt} \loadbold \TagsOnRight \hsize=160 true mm \vsize=220 true mm \newcount\snumber \def\nr #1{\the\snumber.#1} \baselineskip=14 pt \font\smcp=cmcsc8 \headline={\ifnum\pageno>1 {\smcp the electronic journal of combinatorics 2 (1995), \#N2\hfill\folio} \fi} \define\Dk{\dot k} \define\Du{\dot u} \define\Dv{\dot v} \define\Dw{\dot w} \topmatter \title The Independence Number of Dense Graphs with Large Odd Girth \endtitle \leftheadtext{The Electronic Journal of Combinatorics 2 (1995) \#N2} \rightheadtext{The Electronic Journal of Combinatorics 2 (1995) \#N2} \affil James B. Shearer \\ Department of Mathematics\\ IBM T.J. Watson Research Center \\ Yorktown Heights, NY 10598 \\ JBS at WATSON.IBM.COM \\ \vbox{\vskip .25in} Submitted: January 31, 1995; Accepted: February 14, 1995 \endaffil \endtopmatter \document %\baselineskip=16pt {\bf Abstract.} Let $G$ be a graph with $n$ vertices and odd girth $2k+3$. Let the degree of a vertex $v$ of $G$ be $d_1 (v)$. Let $\alpha (G)$ be the independence number of $G$. Then we show $\alpha (G) \geq 2^{-\left(\frac{k-1}{k}\right)} \left[ \displaystyle{\sum_{v\in G}} d_1 (v)^{\frac{1}{k-1}} \right]^{(k-1)/k}$. This improves and simplifies results proven by Denley [1]. \vbox{\vskip .25in} \noindent {\bf AMS Subject Classification.} 05C35 \vbox{\vskip .50in} Let $G$ be a graph with $n$ vertices and odd girth $2k+3$. Let $d_i (v)$ be the number of points of degree $i$ from a vertex $v$. Let $\alpha (G)$ be the independence number of $G$. We will prove lower bounds for $\alpha (G)$ which improve and simplify the results proven by Denley [1]. We will consider first the case $k=1$. We need the following lemma. \noindent {\bf Lemma 1:} Let $G$ be a triangle-free graph. Then $$ \alpha (G) \geq \sum_{v \in G} d_1 (v) / [1 + d_1 (v) + d_2 (v)] . $$ \noindent {\bf Proof.} Randomly label the vertices of $G$ with a permutation of the integers from 1 to $n$. Let $A$ be the set of vertices $v$ such that the minimum label on vertices at distance $0,1$ or 2 from $v$ is on a vertex at distance 1. Clearly the probability that $A$ contains a vertex $v$ is $d_1 (v) / [ 1 + d_1 (v) + d_2 (v)]$. Hence the expected size of $A$ is $\displaystyle{\sum_{v \in G}} d_1(v) /[1+ d_1 (v) + d_2 (v)]$. Furthermore, $A$ must be an independent set since if $A$ contains an edge it is easy to see that it must lie in a triangle of $G$ a contradiction. The result follows at once. We can now prove the following theorem. \noindent {\bf Theorem 1.} Suppose $G$ contains no 3 or 5 cycles. Let $\bar d$ be the average degree of vertices of $G$. Then $$ \alpha (G) \geq \sqrt{n \bar d / 2} . $$ \noindent {\bf Proof.} Since $G$ contains no 3 or 5 cycles, we have $\alpha (G) \geq d_1 (v)$ (consider the neighbors of $v$) and $\alpha (G) \geq 1 + d_2 (v)$ (consider $v$ and the points at distance 2 from $v$) for any vertex $v$ of $G$. Hence $\alpha (G) \geq \displaystyle{\sum_{v\in G}} d_1 (v) / [1 + d_1 (v) + d_2 (v)] \geq \displaystyle{\sum_{v\in G}} d_1 (v) / 2 \alpha (G)$ (by lemma 1 and the preceding remark). Therefore $\alpha (G)^2 \geq n \bar d / 2$ or $\alpha (G) \geq \sqrt {n \bar d 2}$ as claimed. This improves Denley's Theorems 1 and 2. It is sharp for the regular complete bipartite graphs $K_{aa}$. The above results are readily extended to graphs of larger odd girth. \noindent {\bf Lemma 2:} Let $G$ have odd girth $2k+1$ or greater $(k\geq 2)$. Then $$ \alpha (G) \geq \sum_{v \in G} \frac{\frac12 ( 1+ d_1 (v) + \cdots + d_{k-1} (v) )}{1 + d_1 (v) + \cdots + d_k (v)} . $$ \noindent {\bf Proof.} Randomly label the vertices of $G$ with a permutation of the integers from 1 to $n$. Let $A$ (respectively $B$) be the set of vertices $v$ of $G$ such that the minimum label on vertices at distance $k$ or less from $v$ is at even (respectively odd) distance $k-1$ or less. It is easy to see that $A$ and $B$ are independent sets and that the expected size of $A \cup B$ is $\displaystyle{\sum_{v \in G}} \frac{(1 + d_1 (v) + \cdots + d_{k-1} (v))}{1 + d_1 (v) + \cdots + d_k (v)}$. The lemma follows at once. \noindent {\bf Theorem 2:} Let $G$ have odd girth $2k+3$ or greater $(k\geq 2)$. Then $$ \alpha (G) \geq 2^{- \left( \frac{k-1}{k} \right)} \left[ \sum_{v \in G} d_1 (v)^{\frac{1}{k-1}} \right]^{\frac{k-1}{k}} . $$ \noindent {\bf Proof.} By Lemmas 1, 2 $$ \split \alpha (G) \geq \sum_{v \in G} \left[ \left[ \frac{d_1 (v)}{1 +d_1 (v) +d_2 (v)} \right] \right. & + \frac12 \left[ \frac{1+d_1 (v) + d_2 (v)}{1+ d_1 (v) + d_2 (v) + d_3 (v)} \right] \\ + \cdots & + \frac12 \left. \left[ \frac{1 +d_1 (v) + \cdots + d_{k-1} (v)}{1 + d_1 (v) + \cdots + d_k (v)} \right] \right] / (k-1) . \endsplit $$ Since the arithmetic mean is greater than the geometric mean, we can conclude that $\alpha (G) \geq \displaystyle{\sum_{v \in G}} \left[ \frac{d_1 (v) 2^{-(k-2)}}{1+d_1 (v) + \cdots + d_k(v)} \right]^{1/k-1}$. Since the points at even (odd) distance less than or equal $k$ from any vertex $v$ in $G$ form independent sets we have $2 \alpha (G) \geq 1 + d_1 (v) + \cdots + d_k (v)$. Hence $\alpha (G) \geq \displaystyle{\sum_{v\in G}} \left[ \frac{d_1(v)}{2^{k-1} \alpha (G)} \right]^{\frac{1}{k-1}}$ or $\alpha (G)^{\frac{k}{k-1}} \geq \frac12 \left[ \displaystyle{\sum_{v\in G}} d_1(v)^{\frac{1}{k-1}} \right]$ or $\alpha (G) \geq 2^{-(\frac{k-1}{k})} \left[ \displaystyle{\sum_{v\in G}} d_1(v)^{\frac{1}{k-1}} \right]^{\frac{k-1}{k}}$ as claimed. \noindent {\bf Corollary 1:} Let $G$ be regular degree $d$ and odd girth $2k + 3$ or greater $(k \geq 2 )$. Then $$ \alpha (G) \geq 2^{- \left( \frac{k-1}{k} \right)} n^{\frac{k-1}{k}} d^{\frac{1}{k}} . $$ \noindent {\bf Proof.} Immediate from Theorem 3. This improves Denley's Theorem 4. \vbox{\vskip 0.1in} \Refs \widestnumber \key{1} \ref \no 1 \by Denley, T. \paper The Independence number of graphs with large odd girth \jour The Electronic Journal of Combinatorics {\bf 1} (1994) \#R9 \endref \endRefs \enddocument .