\documentclass[12pt]{article} \usepackage{amsmath,mathrsfs,bbm} \usepackage{amssymb} \textwidth=4.825in \overfullrule=0pt \thispagestyle{empty} \begin{document} \noindent % % {\bf Herbert S. Wilf} % % \medskip \noindent % % {\bf The Distribution of Run Lengths in Integer Compositions} % % \vskip 5mm \noindent % % % % We find explicitly the generating function for the number of compositions of $n$ that avoid all words on a given list of forbidden subwords, in the case where the forbidden words are pairwise letter-disjoint. From this we get the gf for compositions of $n$ with no $k$ consecutive parts equal, as well as the number with $m$ parts and no consecutive $k$ parts being equal, which generalizes corresponding results for Carlitz compositions. \end{document} .