\documentclass[12pt]{article} \usepackage{amsmath,mathrsfs,bbm} \usepackage{amssymb} \textwidth=4.825in \overfullrule=0pt \thispagestyle{empty} \begin{document} \noindent % % {\bf Mark K. Goldberg and Malik Magdon-Ismail} % % \medskip \noindent % % {\bf Embedding a Forest in a Graph} % % \vskip 5mm \noindent % % % % For $p\ge 1$, we prove that every forest with $p$ trees whose sizes are $a_1, \ldots, a_p$ can be embedded in any graph containing at least $\sum_{i=1}^p (a_i + 1)$ vertices and having minimum degree at least $\sum_{i=1}^p a_i$. \end{document} .