\documentclass[12pt]{article} \usepackage{amsmath,mathrsfs,bbm} \usepackage{amssymb} \textwidth=4.825in \overfullrule=0pt \thispagestyle{empty} \begin{document} \noindent % % {\bf Janine Bastian, Thomas Prellberg, Martin Rubey and Christian Stump} % % \medskip \noindent % % {\bf Counting the Number of Elements in the Mutation Classes of $\tilde A_n-$Quivers} % % \vskip 5mm \noindent % % % % In this article we prove explicit formulae for the number of non-isomorphic cluster-tilted algebras of type $\tilde A_n$ in the derived equivalence classes. In particular, we obtain the number of elements in the mutation classes of quivers of type $\tilde A_n$. As a by-product, this provides an alternative proof for the number of quivers mutation equivalent to a quiver of Dynkin type $D_n$ which was first determined by Buan and Torkildsen. \end{document} .