\documentclass[12pt]{article} \usepackage{amsmath,mathrsfs,bbm} \usepackage{amssymb} \textwidth=4.825in \overfullrule=0pt \thispagestyle{empty} \begin{document} \noindent % % {\bf Victor J. W. Guo and Dan-Mei Yang} % % \medskip \noindent % % {\bf A $q$-Analogue of some Binomial Coefficient Identities of Y. Sun} % % \vskip 5mm \noindent % % % % We give a $q$-analogue of some binomial coefficient identities of Y. Sun [Electron. J. Combin. 17 (2010), \#N20] as follows: \begin{align*} \sum_{k=0}^{\lfloor n/2\rfloor}{m+k\brack k}_{q^2}{m+1\brack n-2k}_{q} q^{n-2k\choose 2} &={m+n\brack n}_{q}, \\[5pt] \sum_{k=0}^{\lfloor n/4\rfloor}{m+k\brack k}_{q^4}{m+1\brack n-4k}_{q} q^{n-4k\choose 2} &=\sum_{k=0}^{\lfloor n/2\rfloor}(-1)^k{m+k\brack k}_{q^2}{m+n-2k\brack n-2k}_{q}, \end{align*} where ${n\brack k}_q$ stands for the $q$-binomial coefficient. We provide two proofs, one of which is combinatorial via partitions. \end{document} .