\documentclass[12pt]{article} \usepackage{amsmath,mathrsfs,bbm} \usepackage{amssymb} \textwidth=4.825in \overfullrule=0pt \thispagestyle{empty} \begin{document} \noindent % % {\bf Hoda Bidkhori and ShinnYih Huang} % % \medskip \noindent % % {\bf Strongly Cancellative and Recovering Sets on Lattices} % % \vskip 5mm \noindent % % % % We use information theory to study recovering sets ${\mathbf{R}}_L$ and strongly cancellative sets ${\mathbf{C}}_L$ on different lattices. These sets are special classes of recovering pairs and cancellative sets previously discussed in the papers of Simonyi, Frankl, and F\"uredi. We mainly focus on the lattices $B_n$ and $D_{l}^{k}$. Specifically, we find upper bounds and constructions for the sets ${\mathbf{R}}_{B_n}$, ${\mathbf{C}}_{B_n}$, and ${\mathbf{C}}_{D_{l}^{k}}$. \end{document} .