\documentclass[12pt]{article} \usepackage{amsmath,mathrsfs,bbm} \usepackage{amssymb} \textwidth=4.825in \overfullrule=0pt \thispagestyle{empty} \begin{document} \noindent % % {\bf Mirka Miller} % % \medskip \noindent % % {\bf Nonexistence of Graphs with Cyclic Defect} % % \vskip 5mm \noindent % % % % In this note we consider graphs of maximum degree $\Delta$, diameter $D$ and order ${\rm M}(\Delta,D) - 2$, where ${\rm M}(\Delta,D)$ is the {\it Moore bound}, that is, graphs of {\it defect} 2. Delorme and Pineda-Villavicencio conjectured that such graphs do not exist for $D\geq 3$ if they have the so called `cyclic defect'. Here we prove that this conjecture holds. \end{document} .