\documentclass[12pt]{article} \usepackage{amsmath,mathrsfs,bbm} \usepackage{amssymb} \textwidth=4.825in \overfullrule=0pt \thispagestyle{empty} \begin{document} \noindent % % {\bf Tero Harju, Tomi K\"arki and Dirk Nowotka } % % \medskip \noindent % % {\bf The Number of Positions Starting a Square in Binary Words} % % \vskip 5mm \noindent % % % % We consider the number $\sigma(w)$ of positions that do not start a square in binary words~$w$. Letting $\sigma(n)$ denote the maximum of $\sigma(w)$ for length $|w|=n$, we show that $\lim \sigma(n)/n = 15/31$. \end{document} .