\documentclass[12pt]{article} \usepackage{amsmath,mathrsfs,bbm} \usepackage{amssymb} \textwidth=4.825in \overfullrule=0pt \thispagestyle{empty} \begin{document} \noindent % % {\bf Emily Berger} % % \medskip \noindent % % {\bf Hurwitz Equivalence in Dihedral Groups} % % \vskip 5mm \noindent % % % % In this paper we determine the orbits of the braid group $B_n$ action on $G^n$ when $G$ is a dihedral group and for any $T \in G^n$. We prove that the following invariants serve as necessary and sufficient conditions for Hurwitz equivalence. They are: the product of its entries, the subgroup generated by its entries, and the number of times each conjugacy class (in the subgroup generated by its entries) is represented in $T$. \end{document} .