\documentclass[12pt]{article} \usepackage{amsmath,mathrsfs,bbm} \usepackage{amssymb} \textwidth=4.825in \overfullrule=0pt \thispagestyle{empty} \begin{document} \noindent % % {\bf James G. Lefevre and Thomas A. McCourt} % % \medskip \noindent % % {\bf The Disjoint $m$-Flower Intersection Problem for Latin Squares} % % \vskip 5mm \noindent % % % % An $m$-flower in a latin square is a set of $m$ entries which share either a common row, a common column, or a common symbol, but which are otherwise distinct. Two $m$-flowers are disjoint if they share no common row, column or entry. In this paper we give a solution of the intersection problem for disjoint $m$-flowers in latin squares; that is, we determine precisely for which triples $(n,m,x)$ there exists a pair of latin squares of order $n$ whose intersection consists exactly of $x$ disjoint $m$-flowers. \end{document} .