\documentclass[12pt]{article} \usepackage{amsmath,mathrsfs,bbm} \usepackage{amssymb} \textwidth=4.825in \overfullrule=0pt \thispagestyle{empty} \begin{document} \noindent % % {\bf Ka\u{g}an Kur\c{s}ung\"{o}z } % % \medskip \noindent % % {\bf Counting $k$-Marked Durfee Symbols} % % \vskip 5mm \noindent % % % % An alternative characterization of $k$-marked Durfee symbols defined by Andrews is given. Some identities involving generating functions of $k$-marked Durfee symbols are proven combinatorially by considering the symbols not individually, but in equivalence classes. Also, a related binomial coefficient identity is obtained in the course. \end{document} .