\documentclass[12pt]{article} \usepackage{amsmath,mathrsfs,bbm} \usepackage{amssymb} \textwidth=4.825in \overfullrule=0pt \thispagestyle{empty} \begin{document} \noindent % % {\bf Noga Alon, Simi Haber and Michael Krivelevich} % % \medskip \noindent % % {\bf The Number of $f$-Matchings in Almost Every Tree is a Zero Residue} % % \vskip 5mm \noindent % % % % For graphs $F$ and $G$ an \emph{$F$-matching} in $G$ is a subgraph of $G$ consisting of pairwise vertex disjoint copies of $F$. The number of $F$-matchings in $G$ is denoted by $s(F,G)$. We show that for every fixed positive integer $m$ and every fixed tree $F$, the probability that $s(F,\mathcal{T}_n) \equiv 0 \pmod{m}$, where $\mathcal{T}_n$ is a random labeled tree with $n$ vertices, tends to one exponentially fast as $n$ grows to infinity. A similar result is proven for induced $F$-matchings. As a very special special case this implies that the number of independent sets in a random labeled tree is almost surely a zero residue. A recent result of Wagner shows that this is the case for random unlabeled trees as well. \end{document} .