\documentclass[12pt]{article} \usepackage{amsmath,mathrsfs,bbm} \usepackage{amssymb} \textwidth=4.825in \overfullrule=0pt \thispagestyle{empty} \begin{document} \noindent % % {\bf Thomas Enkosky} % % \medskip \noindent % % {\bf Counting Points of Slope Varieties over Finite Fields} % % \vskip 5mm \noindent % % % % The slope variety of a graph is an algebraic set whose points correspond to drawings of that graph. A complement-reducible graph (or cograph) is a graph without an induced four-vertex path. We construct a bijection between the zeroes of the slope variety of the complete graph on $n$ vertices over $\mathbb{F}_2$, and the complement-reducible graphs on $n$ vertices. \end{document} .