\documentclass[12pt]{article} \usepackage{amsmath,mathrsfs,bbm} \usepackage{amssymb} \textwidth=4.825in \overfullrule=0pt \thispagestyle{empty} \begin{document} \noindent % % {\bf J\'anos Bar\'at, Gwena\"el Joret and David R. Wood} % % \medskip \noindent % % {\bf Disproof of the List Hadwiger Conjecture} % % \vskip 5mm \noindent % % % % The List Hadwiger Conjecture asserts that every $K_t$-minor-free graph is $t$-choosable. We disprove this conjecture by constructing a $K_{3t+2}$-minor-free graph that is not $4t$-choosable for every integer $t\geq 1$. \end{document} .