\documentclass[12pt]{article} \usepackage{amsmath,mathrsfs,bbm} \usepackage{amssymb} \textwidth=4.825in \overfullrule=0pt \thispagestyle{empty} \begin{document} \noindent % % {\bf Steve Butler and Jason Grout } % % \medskip \noindent % % {\bf A Construction of Cospectral Graphs for the Normalized Laplacian} % % \vskip 5mm \noindent % % % % We give a method to construct cospectral graphs for the normalized Laplacian by a local modification in some graphs with special structure. Namely, under some simple assumptions, we can replace a small bipartite graph with a cospectral mate without changing the spectrum of the entire graph. We also consider a related result for swapping out biregular bipartite graphs for the matrix $A+tD$. We produce (exponentially) large families of non-bipartite, non-regular graphs which are mutually cospectral, and also give an example of a graph which is cospectral with its complement but is not self-complementary. \end{document} .