\documentclass[12pt]{article} \usepackage{amsmath,mathrsfs,bbm} \usepackage{amssymb} \textwidth=4.825in \overfullrule=0pt \thispagestyle{empty} \begin{document} \noindent % % {\bf Deepa Sinha and Pravin Garg } % % \medskip \noindent % % {\bf On the Unitary Cayley Signed Graphs} % % \vskip 5mm \noindent % % % % A $signed\ graph$ (or $sigraph$ in short) is an ordered pair \ $S = (S^u, \sigma)$, \ where \ $S^u$ \ is a graph \ $G = (V, E)$ \ and \ $\sigma : E\rightarrow \{+,-\}$ \ is a function from the edge set \ $E$ \ of \ $S^u$ \ into the set \ $\{+, -\}$. For a positive integer \ $n > 1$, the \emph{unitary Cayley graph} \ $X_n$ \ is the graph whose vertex set is \ $Z_n$, the integers modulo \ $n$ \ and if \ $U_n$ \ denotes set of all units of the ring \ $Z_n$, \ then two vertices \ $a, b$ \ are adjacent if and only if \ $a-b \in U_n$. For a positive integer \ $n > 1$, the \emph{unitary Cayley sigraph} \ $\mathcal{S}_n = (\mathcal{S}^u_n, \sigma)$ \ is defined as the sigraph, where \ $\mathcal{S}^u_n$ \ is the unitary Cayley graph and for an edge \ $ab$ \ of \ $\mathcal{S}_n$, $$\sigma(ab) = \begin{cases} + & \text{if \ $a \in U_n$ \ or \ $b \in U_n$},\\ - & \text{otherwise.} \end{cases}$$ In this paper, we have obtained a characterization of balanced unitary Cayley sigraphs. Further, we have established a characterization of canonically consistent unitary Cayley sigraphs \ $\mathcal{S}_n$, where \ $n$ \ has at most two distinct odd prime factors. \end{document} .