\documentclass[12pt]{article} \usepackage{amsmath,mathrsfs,bbm} \usepackage{amssymb} \textwidth=4.825in \overfullrule=0pt \thispagestyle{empty} \begin{document} \noindent % % {\bf Ross J. Kang, L\'aszl\'o Lov\'asz, Tobias M\"uller and Edward R. Scheinerman} % % \medskip \noindent % % {\bf Dot Product Representations of Planar Graphs} % % \vskip 5mm \noindent % % % % A graph $G$ is a \emph{$k$-dot product graph} if there exists a vector labelling $u: V(G) \to \mathbb{R}^k$ such that $u(i)^{T}u(j) \geq 1$ if and only if $ij \in E(G)$. Fiduccia, Scheinerman, Trenk and Zito~[{\em Discrete Math.}, 1998] asked whether every planar graph is a $3$-dot product graph. We show that the answer is ``no''. On the other hand, every planar graph is a $4$-dot product graph. We also answer the corresponding questions for planar graphs of prescribed girth and for outerplanar graphs. \end{document} .