\documentclass[12pt]{article} \usepackage{amsmath,mathrsfs,bbm} \usepackage{amssymb} \textwidth=4.825in \overfullrule=0pt \thispagestyle{empty} \begin{document} \noindent % % {\bf Le Anh Vinh } % % \medskip \noindent % % {\bf Distinct Triangle Areas in a Planar Point Set over Finite Fields} % % \vskip 5mm \noindent % % % % Let $\mathcal{P}$ be a set of $n$ points in the finite plane $\mathbbm{F}_q^2$ over the finite field $\mathbbm{F}_q$ of $q$ elements, where $q$ is an odd prime power. For any $s \in \mathbbm{F}_q$, denote by $A (\mathcal{P}; s)$ the number of ordered triangles whose vertices in $\mathcal{P}$ having area $s$. We show that if the cardinality of $\mathcal{P}$ is large enough then $A (\mathcal{P}; s)$ is close to the expected number $|\mathcal{P}|^3/q$. \end{document} .