\documentclass[12pt]{article} \usepackage{amsmath,mathrsfs,bbm} \usepackage{amssymb} \textwidth=4.825in \overfullrule=0pt \thispagestyle{empty} \begin{document} \noindent % % {\bf Sylwia Cichacz, Agnieszka G\"{o}rlich, Magorzata Zwonek and Andrzej \.{Z}ak} % % \medskip \noindent % % {\bf On $(C_n;k)$ Stable Graphs} % % \vskip 5mm \noindent % % % % A graph $G$ is called $(H;k)$-{\it vertex stable} if $G$ contains a subgraph isomorphic to $H$ ever after removing any $k$ of its vertices; stab$(H;k)$ denotes the minimum size among the sizes of all $(H;k)$-vertex stable graphs. In this paper we deal with $(C_{n};k)$-vertex stable graphs with minimum size. For each $n$ we prove that stab$(C_{n};1)$ is one of only two possible values and we give the exact value for infinitely many $n$'s. Furthermore we establish an upper and lower bound for stab$(C_{n};k)$ for $k\geq 2$. \end{document} .