\documentclass[12pt]{article} \usepackage{amsmath,mathrsfs,bbm} \usepackage{amssymb} \textwidth=4.825in \overfullrule=0pt \thispagestyle{empty} \begin{document} \noindent % % {\bf Xue-gang Chen and Wai Chee Shiu} % % \medskip \noindent % % {\bf A New Upper Bound on the Global Defensive Alliance Number in Trees} % % \vskip 5mm \noindent % % % % A global defensive alliance in a graph $G=(V,E)$ is a dominating set $S$ satisfying the condition that for every vertex $v\in S$, $|N[v]\cap S|\geq |N(v)\cap(V-S)|$. In this note, a new upper bound on the global defensive alliance number of a tree is given in terms of its order and the number of support vertices. Moreover, we characterize trees attaining this upper bound. \end{document} .