\documentclass[12pt]{article} \usepackage{amsmath,mathrsfs,bbm} \usepackage{amssymb} \textwidth=4.825in \overfullrule=0pt \thispagestyle{empty} \begin{document} \noindent % % {\bf Mathieu Bogaerts and Giuseppe Mazzuoccolo} % % \medskip \noindent % % {\bf Cyclic and Dihedral 1-Factorizations of Multipartite Graphs} % % \vskip 5mm \noindent % % % % An automorphism group $G$ of a $1$-factorization of the complete multipartite graph $K_{m\times n}$ consists of permutations of the vertices of the graph mapping factors to factors. In this paper, we give a complete answer to the existence problem of a $1$-factorization of $K_{m\times n}$ admitting a cyclic or dihedral group acting sharply transitively on the vertices of the graph. \end{document} .