\documentclass[12pt]{article} \usepackage{amsmath,mathrsfs,bbm} \usepackage{amssymb} \textwidth=4.825in \overfullrule=0pt \thispagestyle{empty} \begin{document} \noindent % % {\bf Richard Evan Schwartz and Serge Tabachnikov} % % \medskip \noindent % % {\bf The Pentagram Integrals on Inscribed Polygons} % % \vskip 5mm \noindent % % % % The pentagram map is a completely integrable system defined on the moduli space of polygons. The integrals for the system are certain weighted homogeneous polynomials, which come in pairs: $E_1,O_2,E_2,O_2,\dots$ In this paper we prove that $E_k=O_k$ for all $k$, when these integrals are restricted to the space of polygons which are inscribed in a conic section. Our proof is essentially a combinatorial analysis of the integrals. \end{document} .