\documentclass[12pt]{article} \usepackage{amsmath,mathrsfs,bbm} \usepackage{amssymb} \textwidth=4.825in \overfullrule=0pt \thispagestyle{empty} \begin{document} \noindent % % {\bf Daniele D'Angeli and Alfredo Donno} % % \medskip \noindent % % {\bf Weighted Spanning Trees on some Self-Similar Graphs} % % \vskip 5mm \noindent % % % % We compute the complexity of two infinite families of finite graphs: the Sierpi\'{n}ski graphs, which are finite approximations of the well-known Sierpi\'nski gasket, and the Schreier graphs of the Hanoi Towers group $H^{(3)}$ acting on the rooted ternary tree. For both of them, we study the weighted generating functions of the spanning trees, associated with several natural labellings of the edge sets. \end{document} .