\documentclass[12pt]{article} \usepackage{amsmath,mathrsfs,bbm} \usepackage{amssymb} \textwidth=4.825in \overfullrule=0pt \thispagestyle{empty} \begin{document} \noindent % % {\bf Yaoping Hou and Tiangang Lei} % % \medskip \noindent % % {\bf Characteristic Polynomials of Skew-Adjacency Matrices of Oriented Graphs} % % \vskip 5mm \noindent % % % % An oriented graph $\overleftarrow{G}$ is a simple undirected graph $G$ with an orientation, which assigns to each edge a direction so that $\overleftarrow{G}$ becomes a directed graph. $G$ is called the underlying graph of $\overleftarrow{G}$ and we denote by $S(\overleftarrow{G})$ the skew-adjacency matrix of $\overleftarrow{G}$ and its spectrum $Sp(\overleftarrow{G})$ is called the skew-spectrum of $\overleftarrow{G}$. In this paper, the coefficients of the characteristic polynomial of the skew-adjacency matrix $S(\overleftarrow{G}) $ are given in terms of $\overleftarrow{G}$ and as its applications, new combinatorial proofs of known results are obtained and new families of oriented bipartite graphs $\overleftarrow{G}$ with $Sp(\overleftarrow{G})={\bf i} Sp(G) $ are given. \end{document} .